A Dual-Modal Approach Using Electromyography and Sonomyography Improves Prediction of Dynamic Ankle Movement: A Case Study

情态动词 计算机科学 脚踝 特征(语言学) 人工智能 肌电图 集合(抽象数据类型) 模式识别(心理学) 计算机视觉 物理医学与康复 医学 语言学 哲学 病理 化学 高分子化学 程序设计语言
作者
Qiang Zhang,Ashwin Iyer,Ziyue Sun,Kang Kim,Nitin Sharma
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29: 1944-1954 被引量:27
标识
DOI:10.1109/tnsre.2021.3106900
摘要

For decades, surface electromyography (sEMG) has been a popular non-invasive bio-sensing technology for predicting human joint motion. However, cross-talk, interference from adjacent muscles, and its inability to measure deeply located muscles limit its performance in predicting joint motion. Recently, ultrasound (US) imaging has been proposed as an alternative non-invasive technology to predict joint movement due to its high signal-to-noise ratio, direct visualization of targeted tissue, and ability to access deep-seated muscles. This paper proposes a dual-modal approach that combines US imaging and sEMG for predicting volitional dynamic ankle dorsiflexion movement. Three feature sets: 1) a uni-modal set with four sEMG features, 2) a uni-modal set with four US imaging features, and 3) a dual-modal set with four dominant sEMG and US imaging features, together with measured ankle dorsiflexion angles, were used to train multiple machine learning regression models. The experimental results from a seated posture and five walking trials at different speeds, ranging from 0.50 m/s to 1.50 m/s, showed that the dual-modal set significantly reduced the prediction root mean square errors (RMSEs). Compared to the uni-modal sEMG feature set, the dual-modal set reduced RMSEs by up to 47.84% for the seated posture and up to 77.72% for the walking trials. Similarly, when compared to the US imaging feature set, the dual-modal set reduced RMSEs by up to 53.95% for the seated posture and up to 58.39% for the walking trials. The findings show that potentially the dual-modal sensing approach can be used as a superior sensing modality to predict human intent of a continuous motion and implemented for volitional control of clinical rehabilitative and assistive devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助小先生采纳,获得10
刚刚
orchid发布了新的文献求助10
1秒前
ddd应助毛钱采纳,获得10
1秒前
午午发布了新的文献求助30
2秒前
Akim应助相龙采纳,获得10
3秒前
张张的张发布了新的文献求助50
3秒前
FENGHUI发布了新的文献求助10
4秒前
4秒前
汉堡包应助结实惜灵采纳,获得10
4秒前
4秒前
5秒前
彧辰完成签到 ,获得积分10
6秒前
7秒前
正直凌文发布了新的文献求助10
7秒前
12关闭了12文献求助
8秒前
8秒前
大个应助WNing采纳,获得10
9秒前
9秒前
9秒前
9秒前
jiaping完成签到,获得积分10
9秒前
Hazel发布了新的文献求助10
10秒前
不知道发布了新的文献求助10
10秒前
10秒前
彬彬嘉完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
cao发布了新的文献求助10
14秒前
汉堡包应助AN采纳,获得30
14秒前
MchemG应助AN采纳,获得50
14秒前
科研通AI6.1应助AN采纳,获得10
14秒前
852应助AN采纳,获得10
14秒前
Akim应助AN采纳,获得10
14秒前
xiaolei001应助AN采纳,获得10
14秒前
SciGPT应助AN采纳,获得10
14秒前
qq发布了新的文献求助10
14秒前
小先生发布了新的文献求助10
15秒前
kyz完成签到 ,获得积分10
16秒前
lsy发布了新的文献求助10
16秒前
潇洒元芹完成签到,获得积分10
16秒前
斯文败类应助霖槿采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770876
求助须知:如何正确求助?哪些是违规求助? 5588215
关于积分的说明 15425761
捐赠科研通 4904256
什么是DOI,文献DOI怎么找? 2638647
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541641