Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices

普通最小二乘法 地理加权回归模型 加权 地理 地图学 回归 样品(材料) 空间变异性 拟合优度 空间分析 回归分析 统计 计量经济学 计算机科学 数学 放射科 化学 医学 色谱法
作者
Bo Huang,Bo Wu,Michael Barry
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:24 (3): 383-401 被引量:1078
标识
DOI:10.1080/13658810802672469
摘要

Abstract By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data. Keywords: geographically and temporally weighted regressiongeographically weighted regressionspatial nonstationaritytemporal nonstationarityhousing priceCalgary Acknowledgments This research is funded by the Hong Kong Research Grants Council (RGC) under CERG project no. CUHK 444107 and the Natural Sciences and Engineering Research Council (NSERC) of Canada under discovery grant no. 312166-05. Their support is gratefully acknowledged. We also thank the two anonymous reviewers for their insightful comments that have been very helpful in improving this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助高高采纳,获得10
刚刚
Zinnia发布了新的文献求助10
刚刚
1秒前
土豪的紫荷完成签到 ,获得积分10
2秒前
大模型应助悦耳的镜子采纳,获得10
2秒前
隐形曼青应助xia采纳,获得30
2秒前
2秒前
4秒前
健壮的冰夏完成签到,获得积分10
5秒前
5秒前
6秒前
8秒前
ustinian发布了新的文献求助10
9秒前
9秒前
zzz发布了新的文献求助10
12秒前
冯尔蓝完成签到,获得积分10
12秒前
13秒前
13秒前
李爱国应助ZW采纳,获得10
13秒前
脑洞疼应助醉熏的飞薇采纳,获得10
14秒前
科研通AI5应助小写采纳,获得10
17秒前
17秒前
miaomiao发布了新的文献求助10
20秒前
huoguo应助ustinian采纳,获得10
20秒前
HDJ完成签到,获得积分10
22秒前
幕雪发布了新的文献求助10
23秒前
25秒前
繁荣的心情应助隐形冰之采纳,获得60
26秒前
jenningseastera应助have勇气采纳,获得10
26秒前
28秒前
28秒前
在水一方应助1234采纳,获得10
28秒前
思源应助任风采纳,获得10
29秒前
ZW发布了新的文献求助10
30秒前
30秒前
不解释完成签到 ,获得积分10
30秒前
32秒前
tttt9999发布了新的文献求助10
32秒前
33秒前
脑洞疼应助沉静的大侠采纳,获得10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798051
求助须知:如何正确求助?哪些是违规求助? 3343486
关于积分的说明 10316305
捐赠科研通 3060189
什么是DOI,文献DOI怎么找? 1679400
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763221