Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices

普通最小二乘法 地理加权回归模型 加权 地理 地图学 回归 样品(材料) 空间变异性 拟合优度 空间分析 回归分析 统计 计量经济学 计算机科学 数学 放射科 化学 医学 色谱法
作者
Bo Huang,Bo Wu,Michael Barry
出处
期刊:International journal of geographical information systems [Informa]
卷期号:24 (3): 383-401 被引量:1316
标识
DOI:10.1080/13658810802672469
摘要

Abstract By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data. Keywords: geographically and temporally weighted regressiongeographically weighted regressionspatial nonstationaritytemporal nonstationarityhousing priceCalgary Acknowledgments This research is funded by the Hong Kong Research Grants Council (RGC) under CERG project no. CUHK 444107 and the Natural Sciences and Engineering Research Council (NSERC) of Canada under discovery grant no. 312166-05. Their support is gratefully acknowledged. We also thank the two anonymous reviewers for their insightful comments that have been very helpful in improving this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
浮游应助zpfuture采纳,获得10
刚刚
LmY大帅比完成签到,获得积分10
1秒前
2秒前
bwh发布了新的文献求助10
2秒前
风清扬发布了新的文献求助10
2秒前
finally完成签到,获得积分10
3秒前
大个应助小曾采纳,获得30
3秒前
张瑞锋完成签到,获得积分10
3秒前
4秒前
7秒前
8秒前
ajiwjn发布了新的文献求助30
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
猩猩发布了新的文献求助10
14秒前
在水一方应助小麦ime采纳,获得10
15秒前
odinsnow发布了新的文献求助10
15秒前
WSYang完成签到,获得积分10
15秒前
李顺杰发布了新的文献求助10
16秒前
虚幻向秋完成签到,获得积分10
16秒前
AWESOME Ling发布了新的文献求助10
17秒前
orixero应助悲凉的世倌采纳,获得30
17秒前
乐乐应助pbj采纳,获得10
18秒前
18秒前
yang发布了新的文献求助10
20秒前
丘比特应助载荷采纳,获得10
21秒前
AWESOME Ling完成签到,获得积分10
22秒前
Hello应助文医生采纳,获得10
23秒前
23秒前
皮皮发布了新的文献求助10
24秒前
ajiwjn完成签到,获得积分10
24秒前
灰太狼完成签到 ,获得积分10
24秒前
清蒸深海鱼完成签到,获得积分10
24秒前
123完成签到,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492914
求助须知:如何正确求助?哪些是违规求助? 4590801
关于积分的说明 14432672
捐赠科研通 4523483
什么是DOI,文献DOI怎么找? 2478348
邀请新用户注册赠送积分活动 1463425
关于科研通互助平台的介绍 1436084