Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices

普通最小二乘法 地理加权回归模型 加权 地理 地图学 回归 样品(材料) 空间变异性 拟合优度 空间分析 回归分析 统计 计量经济学 计算机科学 数学 医学 化学 色谱法 放射科
作者
Bo Huang,Bo Wu,Michael Barry
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:24 (3): 383-401 被引量:1129
标识
DOI:10.1080/13658810802672469
摘要

Abstract By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data. Keywords: geographically and temporally weighted regressiongeographically weighted regressionspatial nonstationaritytemporal nonstationarityhousing priceCalgary Acknowledgments This research is funded by the Hong Kong Research Grants Council (RGC) under CERG project no. CUHK 444107 and the Natural Sciences and Engineering Research Council (NSERC) of Canada under discovery grant no. 312166-05. Their support is gratefully acknowledged. We also thank the two anonymous reviewers for their insightful comments that have been very helpful in improving this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lenetivy发布了新的文献求助10
1秒前
xixixi发布了新的文献求助10
2秒前
充电宝应助qing采纳,获得10
2秒前
sunjia完成签到,获得积分10
2秒前
同福完成签到,获得积分20
2秒前
meiliwuxian发布了新的文献求助10
2秒前
wenwen发布了新的文献求助10
2秒前
LL发布了新的文献求助10
2秒前
2秒前
3秒前
bb完成签到,获得积分10
3秒前
日立天上发布了新的文献求助10
3秒前
sunwending发布了新的文献求助10
3秒前
灵巧的鸭子完成签到,获得积分10
5秒前
科研通AI5应助Always62442采纳,获得10
5秒前
yang_keai完成签到,获得积分10
6秒前
Hmc完成签到 ,获得积分10
6秒前
Vino完成签到,获得积分10
6秒前
奋斗的菀发布了新的文献求助10
6秒前
7秒前
关键词发布了新的文献求助10
8秒前
8秒前
芸栖完成签到 ,获得积分10
9秒前
JamesPei应助笑傲江湖采纳,获得10
10秒前
爆米花应助精明思烟采纳,获得10
10秒前
10秒前
文献狗完成签到,获得积分10
10秒前
牛牛完成签到,获得积分10
11秒前
11秒前
打卡下班应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
12秒前
tangchuan应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158526
求助须知:如何正确求助?哪些是违规求助? 3694466
关于积分的说明 11665897
捐赠科研通 3386549
什么是DOI,文献DOI怎么找? 1857135
邀请新用户注册赠送积分活动 918236
科研通“疑难数据库(出版商)”最低求助积分说明 831434