Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices

普通最小二乘法 地理加权回归模型 加权 地理 地图学 回归 样品(材料) 空间变异性 拟合优度 空间分析 回归分析 统计 计量经济学 计算机科学 数学 放射科 化学 医学 色谱法
作者
Bo Huang,Bo Wu,Michael Barry
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:24 (3): 383-401 被引量:1129
标识
DOI:10.1080/13658810802672469
摘要

Abstract By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data. Keywords: geographically and temporally weighted regressiongeographically weighted regressionspatial nonstationaritytemporal nonstationarityhousing priceCalgary Acknowledgments This research is funded by the Hong Kong Research Grants Council (RGC) under CERG project no. CUHK 444107 and the Natural Sciences and Engineering Research Council (NSERC) of Canada under discovery grant no. 312166-05. Their support is gratefully acknowledged. We also thank the two anonymous reviewers for their insightful comments that have been very helpful in improving this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范戴克发布了新的文献求助10
1秒前
整齐乐驹完成签到,获得积分10
1秒前
科研通AI6应助MIRROR采纳,获得10
1秒前
英俊的铭应助MM采纳,获得10
2秒前
长安发布了新的文献求助10
2秒前
2秒前
砚草难书发布了新的文献求助10
3秒前
张贵虎发布了新的文献求助10
3秒前
小蘑菇应助自然的曼安采纳,获得10
3秒前
于小福发布了新的文献求助10
3秒前
3秒前
张丹兰发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
陈陈陈完成签到,获得积分10
5秒前
谢婉莹完成签到,获得积分10
5秒前
5秒前
公西香露完成签到,获得积分20
6秒前
思源应助邵小庆采纳,获得10
6秒前
长安完成签到,获得积分10
8秒前
小丸子发布了新的文献求助10
9秒前
寒冷的书瑶完成签到,获得积分10
9秒前
丘比特应助gtgyh采纳,获得10
9秒前
einspringen发布了新的文献求助10
9秒前
10秒前
wanci应助droke采纳,获得10
11秒前
12秒前
azami发布了新的文献求助10
12秒前
英姑应助ianh采纳,获得30
12秒前
共享精神应助y大哥略略略采纳,获得10
12秒前
NiNi发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
郭蓉洁发布了新的文献求助10
14秒前
15秒前
NN发布了新的文献求助10
15秒前
雪梨发布了新的文献求助10
16秒前
范戴克完成签到 ,获得积分20
16秒前
16秒前
852应助李哈哈采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4691997
求助须知:如何正确求助?哪些是违规求助? 4063427
关于积分的说明 12563857
捐赠科研通 3761562
什么是DOI,文献DOI怎么找? 2077431
邀请新用户注册赠送积分活动 1105906
科研通“疑难数据库(出版商)”最低求助积分说明 984484