Discovery Radiomics for Computed Tomography Cancer Detection

无线电技术 卷积神经网络 计算机科学 人工智能 诊断准确性 医学影像学 模式识别(心理学) 机器学习 放射科 医学
作者
Divya Kumar,Mohammad Javad Shafiee,Audrey G. Chung,Farzad Khalvati,Masoom A. Haider,Alexander Wong
出处
期刊:Cornell University - arXiv 被引量:3
摘要

Objective: Lung cancer is the leading cause for cancer related deaths. As such, there is an urgent need for a streamlined process that can allow radiologists to provide diagnosis with greater efficiency and accuracy. A powerful tool to do this is radiomics. Method: In this study, we take the idea of radiomics one step further by introducing the concept of discovery radiomics for lung cancer detection using CT imaging data. Rather than using pre-defined, hand-engineered feature models as with current radiomics-driven methods, we discover custom radiomic sequencers that can generate radiomic sequences consisting of abstract imaging-based features tailored for characterizing lung tumour phenotype. In this study, we realize these custom radiomic sequencers as deep convolutional sequencers using a deep convolutional neural network learning architecture based on a wealth of CT imaging data. Results: To illustrate the prognostic power and effectiveness of the radiomic sequences produced by the discovered sequencer, we perform a classification between malignant and benign lesions from 93 patients with diagnostic data from the LIDC-IDRI dataset. Using the clinically provided diagnostic data as ground truth, proposed framework provided an average accuracy of 77.52% via 10-fold cross-validation with a sensitivity of 79.06% and specificity of 76.11%. We also perform quantitative analysis to establish the effectiveness of the radiomics sequences. Conclusion: The proposed framework outperforms the state-of-the art approach for lung lesion classification. Significance: These results illustrate the potential for the proposed discovery radiomics approach in aiding radiologists in improving screening efficiency and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
刚刚
丿淘丶Tao丨完成签到,获得积分10
刚刚
非而者厚应助柠檬不爱橘采纳,获得10
2秒前
3秒前
Luna发布了新的文献求助10
3秒前
kid1412完成签到 ,获得积分10
4秒前
sushx完成签到,获得积分10
7秒前
deng203发布了新的文献求助10
8秒前
哈哈哈完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
今后应助自信的雪糕采纳,获得10
12秒前
13秒前
单薄松鼠完成签到 ,获得积分10
14秒前
14秒前
15秒前
隐形曼青应助是我呀小夏采纳,获得10
15秒前
冰魂应助认真柠檬采纳,获得10
15秒前
十一玮完成签到,获得积分10
15秒前
小医僧发布了新的文献求助10
16秒前
bym发布了新的文献求助10
16秒前
汉堡包应助懦弱的龙猫采纳,获得30
16秒前
海鲜发布了新的文献求助10
17秒前
hoongyan完成签到 ,获得积分10
17秒前
我不到啊完成签到,获得积分10
17秒前
17秒前
18秒前
搜集达人应助黄徐采纳,获得10
18秒前
JamesPei应助彭嬇采纳,获得10
19秒前
honoruru完成签到,获得积分10
19秒前
upupup111完成签到,获得积分10
19秒前
shimhjy应助咖啡豆采纳,获得10
19秒前
暗中观察完成签到,获得积分10
20秒前
20秒前
21秒前
在水一方应助天天采纳,获得10
21秒前
JamesPei应助天天采纳,获得10
21秒前
SYLH应助756333725采纳,获得10
21秒前
21秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785