The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery

纳米囊 内吞作用 内体 月桂酸 细胞内 细胞生物学 纳米载体 小泡 药物输送 生物物理学 胞饮病 化学 材料科学 生物化学 生物 纳米技术 纳米颗粒 脂肪酸 受体
作者
Lijuan Jiang,Xin Liang,Gan Liu,Yun Zhou,Xinyu Ye,Xiuli Chen,Qianwei Miao,Li Gao,Xu Dong Zhang,Lin Mei
出处
期刊:Drug Delivery [Informa]
卷期号:25 (1): 985-994 被引量:16
标识
DOI:10.1080/10717544.2018.1461954
摘要

Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助li采纳,获得10
刚刚
李李李发布了新的文献求助10
刚刚
K丶口袋完成签到,获得积分10
1秒前
观自在发布了新的文献求助10
1秒前
1秒前
爰采唐矣完成签到,获得积分10
1秒前
在水一方应助列苑苑采纳,获得10
1秒前
周一完成签到,获得积分10
1秒前
6898完成签到,获得积分20
2秒前
2秒前
小马甲应助开朗千山采纳,获得10
2秒前
上官若男应助孙树人采纳,获得10
2秒前
LZR发布了新的文献求助10
3秒前
kenan完成签到,获得积分10
3秒前
黑胡椒发布了新的文献求助10
4秒前
4秒前
无昵称发布了新的文献求助10
4秒前
4秒前
Xxxxxxx完成签到,获得积分10
4秒前
李爱国应助平淡冬亦采纳,获得10
5秒前
赘婿应助cgs采纳,获得30
5秒前
5秒前
6秒前
ghx完成签到 ,获得积分10
6秒前
Ava应助高兴的风华采纳,获得10
6秒前
6秒前
Owen应助小鱼采纳,获得10
7秒前
7秒前
shinco完成签到,获得积分10
7秒前
荀荆完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
稚生w发布了新的文献求助10
9秒前
Unfair完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608628
求助须知:如何正确求助?哪些是违规求助? 4693398
关于积分的说明 14877890
捐赠科研通 4718180
什么是DOI,文献DOI怎么找? 2544398
邀请新用户注册赠送积分活动 1509479
关于科研通互助平台的介绍 1472844