Manipulating the Architecture of Atomically Thin Transition Metal (Hydr)oxides for Enhanced Oxygen Evolution Catalysis

纳米片 塔菲尔方程 过电位 材料科学 纳米材料 催化作用 纳米技术 石墨烯 电解质 过渡金属 耐久性 多孔性 析氧 电极 化学工程 电化学 化学 复合材料 物理化学 工程类 生物化学
作者
Yuhai Dou,Lei Zhang,Jiantie Xu,Chun‐Ting He,Xun Xu,Ziqi Sun,Ting Liao,Balázs Nagy,Porun Liu,Shi Xue Dou
出处
期刊:ACS Nano [American Chemical Society]
卷期号:12 (2): 1878-1886 被引量:59
标识
DOI:10.1021/acsnano.7b08691
摘要

Graphene-like nanomaterials have received tremendous research interest due to their atomic thickness and fascinating properties. Previous studies mainly focus on the modulation of their electronic structures, which undoubtedly optimizes the electronic properties, but is not the only determinant of performance in practical applications. Herein, we propose a generalized strategy to incrementally manipulate the architectures of several atomically thin transition metal (hydr)oxides, and study their effects on catalytic water oxidation. The results demonstrate the obvious superiority of a wrinkled nanosheet architecture in both catalytic activity and durability. For instance, wrinkled Ni(OH)2 nanosheets display a low overpotential of 358.2 mV at 10 mA cm–2, a high current density of 187.2 mA cm–2 at 500 mV, a small Tafel slope of 54.4 mV dec–1, and excellent long-term durability with gradually optimized performance, significantly outperforming other nanosheet architectures and previously reported catalysts. The outstanding catalytic performance is mainly attributable to the 3D porous network structure constructed by wrinkled nanosheets, which not only provides sufficient contact between electrode materials and current collector, but also offers highly accessible channels for facile electrolyte diffusion and efficient O2 escape. Our study provides a perspective on improving the performance of graphene-like nanomaterials in a wide range of practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向晚完成签到,获得积分10
2秒前
全全圆圆圈圈完成签到,获得积分10
2秒前
666完成签到,获得积分10
3秒前
贷款做科研完成签到,获得积分10
3秒前
5秒前
于思枫完成签到,获得积分10
5秒前
duolaAmeng发布了新的文献求助100
6秒前
7秒前
许甜甜鸭应助tjfwg采纳,获得10
8秒前
怕黑山柏发布了新的文献求助10
9秒前
9秒前
10秒前
yury发布了新的文献求助10
10秒前
Xx丶完成签到,获得积分10
12秒前
NexusExplorer应助积极小萱采纳,获得10
13秒前
serenity完成签到 ,获得积分10
13秒前
大龙的野心完成签到,获得积分10
13秒前
孙燕应助贷款做科研采纳,获得10
14秒前
FashionBoy应助贷款做科研采纳,获得10
14秒前
Supreme完成签到,获得积分10
14秒前
14秒前
小葵发布了新的文献求助10
15秒前
duolaAmeng完成签到,获得积分10
15秒前
情怀应助娴娴采纳,获得10
16秒前
感性的芹菜完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助飞云采纳,获得10
19秒前
20秒前
21秒前
李悟尔发布了新的文献求助30
23秒前
23秒前
24秒前
24秒前
在水一方应助kitwang采纳,获得10
26秒前
26秒前
26秒前
27秒前
ww完成签到,获得积分10
28秒前
zmj发布了新的文献求助10
28秒前
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834945
求助须知:如何正确求助?哪些是违规求助? 3377456
关于积分的说明 10498418
捐赠科研通 3096911
什么是DOI,文献DOI怎么找? 1705267
邀请新用户注册赠送积分活动 820527
科研通“疑难数据库(出版商)”最低求助积分说明 772110