MicroRNA expression in cervical cancer: Novel diagnostic and prognostic biomarkers

小RNA 生物 基因 癌变 医学 生存分析 生物标志物 微阵列 宫颈癌 微阵列分析技术 计算生物学 生物信息学 转移 癌症 内科学 基因表达 遗传学
作者
Chundi Gao,Chao Zhou,Jing Zhuang,Lijuan Liu,Cun Liu,Huayao Li,Gongxi Liu,Junyu Wei,Changgang Sun
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:119 (8): 7080-7090 被引量:80
标识
DOI:10.1002/jcb.27029
摘要

Abstract Growing evidence has shown that a large number of miRNAs are abnormally expressed in cervical cancer (CC) tissues and play irreplaceable roles in tumorigenesis, progression, and metastasis. This study aimed to identify new biomarkers and pivotal genes associated with CC prognosis through comprehensive bioinformatics analysis. At first, the data of gene expression microarray (GSE30656) was downloaded from GEO database and differential miRNAs were obtained. Additionally, 4 miRNAs associated with the survival time of patients with CC were screened through TCGA differential data analysis, Kaplan‐Meier, and Landmark analysis. Among them, the low expression of miR‐188 and high expression of miR‐223 correlated with the short survival of CC patients, while the down‐regulation of miR‐99a and miR‐125b was closely related to the 5‐year survival rate of patients. Then, based on the correspondence between the differentially expressed genes (DEGs) in CC from the TCGA data and the 4 miRNAs target genes, 58 target genes were screened to perform the analysis of function enrichment and the visualization of protein‐protein interaction (PPI) networks. The seven pivotal genes of the PPI network as the target genes of four miRNAs related to prognosis, they were directly or indirectly involved in the development of CC. In this study, based on high‐throughput data mining, differentially expressed miRNAs and related target genes were analyzed to provide an effective bioinformatics basis for further understanding of the pathogenesis and prognosis of CC. And the results may be a promising biomarker for the early screening of high‐risk populations and early diagnosis of cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胡国伦完成签到 ,获得积分10
1秒前
TJ完成签到,获得积分10
1秒前
3秒前
自信项链发布了新的文献求助10
3秒前
星辰大海应助Wang采纳,获得10
4秒前
李爱国应助jocelynhuihui采纳,获得10
4秒前
Miyya完成签到,获得积分10
5秒前
6秒前
nozero给无限的寄真的求助进行了留言
6秒前
吉吉国王完成签到,获得积分10
7秒前
调皮的蓝天完成签到,获得积分10
7秒前
彭于彦祖应助友好嵩采纳,获得50
8秒前
orixero应助ff采纳,获得10
9秒前
9秒前
爱刷牙的小熊完成签到 ,获得积分10
9秒前
10秒前
10秒前
儒雅卿发布了新的文献求助10
10秒前
苻一手完成签到,获得积分10
11秒前
跳跃的若灵完成签到,获得积分10
11秒前
peiter发布了新的文献求助10
12秒前
顾瞻完成签到,获得积分10
13秒前
Wang发布了新的文献求助10
13秒前
鲜于之玉完成签到,获得积分10
13秒前
慕容真完成签到,获得积分10
15秒前
医学耗材完成签到 ,获得积分10
15秒前
加油发布了新的文献求助10
15秒前
15秒前
思源应助诚心傲之采纳,获得10
16秒前
蒸有妮的发布了新的文献求助10
16秒前
16秒前
Tomice发布了新的文献求助10
18秒前
科研阿白完成签到 ,获得积分10
18秒前
云端发布了新的文献求助10
18秒前
隐形曼青应助Bellis采纳,获得10
19秒前
19秒前
岩浆果冻完成签到,获得积分10
19秒前
20秒前
体贴兔子完成签到,获得积分10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Artificial bee colony algorithm 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835256
求助须知:如何正确求助?哪些是违规求助? 3377691
关于积分的说明 10500085
捐赠科研通 3097330
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820660
科研通“疑难数据库(出版商)”最低求助积分说明 772174