Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition

材料科学 纳米颗粒 钙钛矿(结构) 沉积(地质) 纳米技术 扩散 化学工程 物理 热力学 古生物学 沉积物 工程类 生物
作者
Masashi Miura,B. Maiorov,Michio Sato,Motoki Kanai,Takeharu Kato,Tomohiro Kato,Teruo Izumi,Satoshi Awaji,P. Mele,M. Kiuchi,Teruo Matsushita
出处
期刊:Npg Asia Materials [Nature Portfolio]
卷期号:9 (11): e447-e447 被引量:62
标识
DOI:10.1038/am.2017.197
摘要

Because of pressing global environmental challenges, focus has been placed on materials for efficient energy use, and this has triggered the search for nanostructural modification methods to improve performance. Achieving a high density of tunable-sized second-phase nanoparticles while ensuring the matrix remains intact is a long-sought goal. In this paper, we present an effective, scalable method to achieve this goal using metal organic deposition in a perovskite system REBa2Cu3O7 (rare earth (RE)) that enhances the superconducting properties to surpass that of previous achievements. We present two industrially compatible routes to tune the nanoparticle size by controlling diffusion during the nanoparticle formation stage by selecting the second-phase material and modulating the precursor composition spatially. Combining these routes leads to an extremely high density (8 × 1022 m−3) of small nanoparticles (7 nm) that increase critical currents and reduce detrimental effects of thermal fluctuations at all magnetic field strengths and temperatures. This method can be directly applied to other perovskite materials where nanoparticle addition is beneficial. An industrially compatible method for creating nanoparticles with controllable size has been demonstrated by a team in Japan and the USA. The thermoelectric and superconducting properties of a perovskite material can be improved by adding nanoparticles. But while a technique known as metal organic deposition enables high-performance materials to be grown, it is difficult to control nanoparticle size because it is determined by the diffusion of atoms. Now, Masashi Miura from the Seikei University/Los Alamos National Laboratory and co-workers have achieved a high density of tunable nanoparticles using metal organic deposition. They controlled diffusion by selecting the second-phase material and modulating the precursor composition. The team showed that BaHfO3 nanoparticles created in this way increased the critical current and reduced thermal fluctuations in a perovskite-composite cuprate superconductor. Nanostructural modifications, in particular nanoparticle (NP) additions, have been shown to have great success in improving energy-related material performance. We show how an economically viable method, namely metal organic deposition, can be used to obtain tunable small size (7 nm) and high number density NPs (8 × 1022 m−3) while maintaining the crystallinity of the perovskite-composite cuprate superconductor film matrix. Critical current density Jc(H) measurements demonstrate that the NPs are highly effective as pinning centers, decreasing vortex motion and fluctuation effects for all temperatures, magnetic field strengths and orientations measured. Our synthesis method can be applied to other perovskite-composite materials to improve their functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DTkunkun完成签到,获得积分10
1秒前
Ava应助李俩甜蜜蜜采纳,获得10
1秒前
小轩完成签到,获得积分10
1秒前
庾傀斗发布了新的文献求助10
2秒前
DTkunkun发布了新的文献求助10
4秒前
汤成莉完成签到 ,获得积分10
4秒前
战场螃蟹完成签到,获得积分10
5秒前
东耦应助iwww采纳,获得10
7秒前
梁帅琦完成签到,获得积分20
9秒前
突突兔完成签到 ,获得积分10
9秒前
10秒前
11秒前
lzd完成签到,获得积分10
12秒前
CodeCraft应助graham1101采纳,获得10
12秒前
ZX0501完成签到,获得积分10
13秒前
hi发布了新的文献求助10
14秒前
苒苒完成签到,获得积分10
16秒前
yimi发布了新的文献求助10
16秒前
apple_chan发布了新的文献求助10
17秒前
solarlad完成签到,获得积分10
17秒前
17秒前
18秒前
Mirandavia发布了新的文献求助20
21秒前
思源应助美丽的雪珍采纳,获得10
22秒前
23秒前
23秒前
charry发布了新的文献求助10
25秒前
27秒前
丘比特应助Ronee采纳,获得10
27秒前
27秒前
30秒前
nick完成签到,获得积分10
31秒前
闪闪的白易完成签到,获得积分10
31秒前
gu123完成签到,获得积分10
31秒前
Orange应助猪猪hero采纳,获得10
32秒前
CipherSage应助sunyanghu369采纳,获得10
32秒前
不会失忆完成签到,获得积分10
32秒前
33秒前
graham1101发布了新的文献求助10
34秒前
35秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056219
求助须知:如何正确求助?哪些是违规求助? 3594312
关于积分的说明 11419936
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825593
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971