Constrained-CNN losses for weakly supervised segmentation

杠杆(统计) 计算机科学 分割 迭代函数 可微函数 数学优化 人工智能 对偶(语法数字) 像素 机器学习 数学 文学类 数学分析 艺术
作者
Hoel Kervadec,José Dolz,Meng Tang,Éric Granger,Yuri Boykov,Ismail Ben Ayed
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:54: 88-99 被引量:247
标识
DOI:10.1016/j.media.2019.02.009
摘要

Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently attracting significant attention in CNN segmentation as it can mitigate the need for full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output (for instance, to constrain the size of the target region) can leverage unlabeled data, guiding the training process with domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact prior knowledge. However, constrained Lagrangian dual optimization has been largely avoided in deep networks, mainly for computational tractability reasons. To the best of our knowledge, the method of [Pathak et al., 2015] is the only prior work that addresses deep CNNs with linear constraints in weakly supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals) from weak labels, mimicking full supervision and facilitating dual optimization. We propose to introduce a differentiable penalty, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained-optimization perspective, our simple penalty-based approach is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly, it yields substantially better results than the Lagrangian-based constrained CNNs in [Pathak et al., 2015], while reducing the computational demand for training. By annotating only a small fraction of the pixels, the proposed approach can reach a level of segmentation performance that is comparable to full supervision on three separate tasks. While our experiments focused on basic linear constraints such as the target-region size and image tags, our framework can be easily extended to other non-linear constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桂花完成签到 ,获得积分10
刚刚
小王同志发布了新的文献求助10
刚刚
yyy完成签到,获得积分10
1秒前
劣根完成签到,获得积分10
1秒前
2秒前
老迟到的友菱完成签到,获得积分10
2秒前
老八完成签到,获得积分10
3秒前
Apple完成签到,获得积分10
3秒前
Zachary完成签到 ,获得积分10
3秒前
丫头完成签到 ,获得积分10
4秒前
忧虑的羊完成签到 ,获得积分10
5秒前
科研通AI2S应助Orange采纳,获得10
5秒前
ada完成签到,获得积分20
6秒前
6秒前
qx完成签到 ,获得积分10
7秒前
北过居庸完成签到,获得积分10
7秒前
风-FBDD完成签到,获得积分10
7秒前
重要手机完成签到 ,获得积分10
7秒前
平常的毛豆应助舒适路人采纳,获得10
7秒前
BINBIN完成签到 ,获得积分10
8秒前
fei菲飞完成签到,获得积分10
8秒前
Mia完成签到,获得积分10
9秒前
Snowy完成签到,获得积分10
10秒前
迷你的百川完成签到,获得积分10
10秒前
小胖卷毛完成签到,获得积分10
10秒前
Mister.WangK完成签到,获得积分10
10秒前
舒心白风发布了新的文献求助10
10秒前
天天快乐应助666采纳,获得10
11秒前
摸鱼的小y完成签到,获得积分10
12秒前
qiangxu完成签到,获得积分10
12秒前
zbearupz完成签到,获得积分10
12秒前
wjw发布了新的文献求助10
14秒前
自然的茉莉完成签到,获得积分10
15秒前
大傻春完成签到 ,获得积分10
15秒前
帅玉玉完成签到,获得积分10
15秒前
哦豁发布了新的文献求助10
16秒前
wulixin完成签到,获得积分10
16秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
17秒前
zhang完成签到,获得积分10
18秒前
科研小辣机完成签到 ,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330170
关于积分的说明 10244733
捐赠科研通 3045558
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800631
科研通“疑难数据库(出版商)”最低求助积分说明 759577