A predictive strategy based on special points for evolutionary dynamic multi-objective optimization

多目标优化 人口 数学优化 集合(抽象数据类型) 计算机科学 进化算法 边界(拓扑) 点(几何) 最优化问题 可行区 数学 几何学 数学分析 社会学 人口学 程序设计语言
作者
Qingya Li,Juan Zou,Shengxiang Yang,Jinhua Zheng,Gan Ruan
出处
期刊:Soft Computing [Springer Science+Business Media]
卷期号:23 (11): 3723-3739 被引量:86
标识
DOI:10.1007/s00500-018-3033-0
摘要

There are some real-world problems in which multiple objectives conflict with each other and the objectives change with time. These problems require an optimization algorithm to track the moving Pareto front or Pareto set over time. In this paper, we propose a predictive strategy based on special points (SPPS) which consists of three mechanisms. The first one is that the non-dominated set is predicted directly by feed-forward center points, which can eliminate many useless individuals predicted by traditional prediction using feed-forward center points. The second one is that a special point set (such as boundary point and knee point) is introduced into the predicted population which can track Pareto front or Pareto set more accurately. The third one is the adaptive diversity maintenance mechanism based on boundary points and center points. The mechanism can introduce diverse individuals of the corresponding number according to the degree of difficulty of the problem to keep the diversity of the population. The number of these diverse individuals is strongly related to the center points. Then, they are generated evenly throughout the decision space between the boundary points. The proposed strategy is compared with the four other state-of-the-art strategies. The experimental results show that SPPS can do well for dynamic multi-objective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助NorthWang采纳,获得10
1秒前
maple完成签到,获得积分20
1秒前
2秒前
充电宝应助陶军辉采纳,获得10
2秒前
4秒前
852应助颠颠的哦采纳,获得10
4秒前
kk完成签到,获得积分10
5秒前
qnmlgbd55完成签到,获得积分10
5秒前
6秒前
丫头完成签到,获得积分20
6秒前
方梦坤完成签到,获得积分10
6秒前
7秒前
小明发布了新的文献求助10
7秒前
wdasdas发布了新的文献求助10
8秒前
上官若男应助liwenhao采纳,获得10
8秒前
powell应助斯文奇迹采纳,获得10
9秒前
9秒前
zfp完成签到,获得积分10
10秒前
寒冷依秋发布了新的文献求助10
11秒前
Wells完成签到,获得积分10
11秒前
科研通AI6应助123采纳,获得10
11秒前
兔子应助zhenpeng8888采纳,获得10
12秒前
脑洞疼应助陶军辉采纳,获得10
12秒前
Evelyn应助方梦坤采纳,获得10
12秒前
无敌发布了新的文献求助10
12秒前
快乐难敌发布了新的文献求助10
13秒前
在水一方应助su采纳,获得10
13秒前
标致的问晴完成签到,获得积分10
13秒前
eee完成签到 ,获得积分10
13秒前
13秒前
NorthWang完成签到,获得积分10
14秒前
乐乐应助小程同学采纳,获得10
15秒前
张婧媛完成签到,获得积分10
15秒前
16秒前
哈罗发布了新的文献求助10
16秒前
zzzzzz关注了科研通微信公众号
17秒前
Hello应助李十一采纳,获得10
17秒前
领导范儿应助xy采纳,获得10
17秒前
陈惠琳完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4758849
求助须知:如何正确求助?哪些是违规求助? 4100571
关于积分的说明 12688058
捐赠科研通 3815451
什么是DOI,文献DOI怎么找? 2106365
邀请新用户注册赠送积分活动 1131056
关于科研通互助平台的介绍 1009404