计算机科学
人工智能
Gabor滤波器
卷积神经网络
模式识别(心理学)
核(代数)
卷积(计算机科学)
特征提取
滤波器(信号处理)
维数(图论)
特征(语言学)
动作识别
领域(数学)
动作(物理)
深度学习
人工神经网络
计算机视觉
数学
班级(哲学)
量子力学
组合数学
物理
哲学
语言学
纯数学
作者
Jiakun Li,Tian Wang,Yi Zhou,Ziyu Wang,Hichem Snoussi
标识
DOI:10.23919/chicc.2017.8029134
摘要
Human action recognition is an important topic in the field of computer vision. We use Gabor filter in 3D CNNs models in recognizing action. Convolutional neural networks (CNNs) are a type of deep learning models, which is an efficient recognition model and has a unique superiority in image processing. Three dimension convolutional neural networks can well analyze action from video data. Gabor filter is a special convolution kernel. Its performance in feature extraction is outstanding. We test out model by KTH dataset and achieve a well result.
科研通智能强力驱动
Strongly Powered by AbleSci AI