Microstructural alterations in bearing steels under rolling contact fatigue

方位(导航) 冶金 材料科学 机械工程 工程类 计算机科学 人工智能
作者
Hanwei Fu
出处
期刊:University of Cambridge - Apollo 被引量:5
标识
DOI:10.17863/cam.17161
摘要

The formation of microstructural alterations in bearing steels under rolling contact fatigue (RCF) is systematically studied. A literature review summarizes current understanding in this field, leading to the key to the formation of these microstructural features being carbon redistribution as a consequence of cyclic rolling contact. In this context, a novel theory is postulated to describe the migration of carbon caused by gliding dislocations. The theory combines the Cottrell atmosphere theory with the Orowan equation and is capable of quantifying the dislocation-assisted carbon flux. Based on the proposed theory, models are suggested for different types of microstructural alterations formed in rolling contact fatigued bearings – dark etching regions (DERs), white etching bands (WEBs) and white etching areas (WEAs). Very good agreement is obtained between the predications made by the models and the experimental data from both this research and the literature. Moreover, the models consider the effects of contact pressure, temperature, rotational speed and number of cycles, and thus can be applied for universal RCF testing conditions. The reproduced microstructural features are also characterized using advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT), with the observation validating the postulated formation mechanisms. It is demonstrated that DERs, WEBs and WEAs follow the same principle during formation – strain induced carbon redistribution. This is the first time that these microstructural alterations are quantitatively described using a unified theory. The achievements obtained from this research can be far reaching. It not only leads to great progress in understanding the phenomenology of RCF in bearing steels, but also can be further extended to other scenarios with similar phenomena such as severe plastic deformation and hydrogen embrittlement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小龙仔123完成签到 ,获得积分10
刚刚
1秒前
liuzhigang完成签到 ,获得积分0
1秒前
赵岩完成签到,获得积分10
2秒前
石慧君完成签到 ,获得积分10
3秒前
云帆完成签到,获得积分10
4秒前
拼搏的白云完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
鱼丸完成签到 ,获得积分10
6秒前
wenjian完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
kkscanl完成签到 ,获得积分10
10秒前
张zzz完成签到,获得积分10
10秒前
Zyk完成签到,获得积分10
10秒前
xcwy完成签到,获得积分10
10秒前
谦让汝燕完成签到,获得积分10
11秒前
栗子完成签到,获得积分10
11秒前
minnom完成签到 ,获得积分10
12秒前
村上春树的摩的完成签到 ,获得积分10
12秒前
liuyq0501完成签到,获得积分0
13秒前
wyq完成签到,获得积分10
16秒前
18秒前
邹佳林完成签到,获得积分10
19秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
22秒前
小张完成签到 ,获得积分10
22秒前
keke发布了新的文献求助10
22秒前
smottom完成签到,获得积分0
23秒前
量子星尘发布了新的文献求助10
23秒前
吕圆圆圆啊完成签到,获得积分10
24秒前
丰富爆米花完成签到 ,获得积分10
24秒前
务实水池完成签到,获得积分10
24秒前
无辜的银耳汤完成签到,获得积分10
24秒前
淡定的天问完成签到 ,获得积分10
26秒前
田様应助wangwei82010采纳,获得10
27秒前
在水一方应助keke采纳,获得10
27秒前
weijie完成签到,获得积分10
27秒前
开心的人杰完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612098
求助须知:如何正确求助?哪些是违规求助? 4696228
关于积分的说明 14890813
捐赠科研通 4731873
什么是DOI,文献DOI怎么找? 2546156
邀请新用户注册赠送积分活动 1510470
关于科研通互助平台的介绍 1473350