Application of multi-task learning in predicting synchronization

作者
Liang Wang,Fan Wang
出处
期刊:Chaos [American Institute of Physics]
卷期号:35 (12)
标识
DOI:10.1063/5.0282201
摘要

There are numerous indicators used to characterize the degree of synchronization for a non-identical system consisting of heterogeneous phase oscillators, such as the critical coupling of phase synchronization and the critical coupling of frequency synchronization and order parameter. Is it possible to predict these indicators simultaneously given the realistic situations of unknown system dynamics, including network structure, local dynamics, and coupling functions? This process, known as multi-task learning, can be achieved through the model-free technique of a feed-forward neural network in machine learning. To elaborate, we can measure the synchronization indicators of a limited number of allocation schemes and utilize these data to train the machine model. Once trained, the model can be employed to predict these indicators simultaneously for any novel allocation scheme. More importantly, the trained machine can also identify the optimal allocation for synchronization from a large pool of candidates. This method solves an outstanding question, which is how to allocate a given set of heterogeneous oscillators on a complex network in order to improve the synchronization performance. Leveraging multi-task learning’s ability to predict multiple synchronization indicators, we can ensure that the system with the optimal performs well throughout the entire synchronization transition. Additionally, we test the scalability of the machine; one approach is to predict the indicators for a system composed of a new set of oscillators, and the other is to simultaneously predict the indicators of different systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璟晔完成签到,获得积分10
1秒前
SoGoodMan完成签到,获得积分10
3秒前
ding应助ppwl采纳,获得10
3秒前
3秒前
splash发布了新的文献求助10
5秒前
任性的蝴蝶完成签到,获得积分10
6秒前
7秒前
11秒前
11秒前
16秒前
浅色凉生完成签到,获得积分10
16秒前
XushengZhang发布了新的文献求助10
18秒前
徐rl完成签到 ,获得积分10
19秒前
浮游应助浅色凉生采纳,获得10
20秒前
candy完成签到,获得积分10
20秒前
23秒前
silencer完成签到 ,获得积分10
24秒前
ZJY完成签到 ,获得积分10
24秒前
土书发布了新的文献求助10
24秒前
xz完成签到 ,获得积分10
25秒前
小情绪完成签到,获得积分10
27秒前
27秒前
bbhk完成签到,获得积分10
28秒前
29秒前
开心的小熊猫完成签到,获得积分10
33秒前
加油发布了新的文献求助10
35秒前
Mer_Mer发布了新的文献求助10
35秒前
XushengZhang完成签到,获得积分10
40秒前
小刺猬完成签到,获得积分10
41秒前
41秒前
pluto应助林冬冬采纳,获得10
41秒前
孤独的哈密瓜数据线完成签到 ,获得积分10
41秒前
41秒前
YY完成签到 ,获得积分10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
One应助科研通管家采纳,获得10
42秒前
顾矜应助科研通管家采纳,获得10
42秒前
Ava应助科研通管家采纳,获得30
42秒前
niNe3YUE应助科研通管家采纳,获得10
42秒前
传奇3应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559718
求助须知:如何正确求助?哪些是违规求助? 4644818
关于积分的说明 14673657
捐赠科研通 4586030
什么是DOI,文献DOI怎么找? 2516086
邀请新用户注册赠送积分活动 1489883
关于科研通互助平台的介绍 1460801