Image analysis and machine learning in digital pathology: Challenges and opportunities

数字化病理学 计算机科学 心灵感应学 人工智能 大数据 背景(考古学) 分割 图像分割 特征提取 计算机视觉 特征(语言学) 数字图像 模式识别(心理学) 医学影像学 图像处理 图像(数学) 数据挖掘 古生物学 哲学 医疗保健 经济 生物 经济增长 语言学 远程医疗
作者
Anant Madabhushi,George Lee
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:33: 170-175 被引量:658
标识
DOI:10.1016/j.media.2016.06.037
摘要

With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular "omics" features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静灵阳完成签到 ,获得积分10
1秒前
璃鱼完成签到 ,获得积分10
1秒前
zhaoming完成签到 ,获得积分10
2秒前
浔初先生发布了新的文献求助10
3秒前
4秒前
了尘完成签到,获得积分10
5秒前
LWJ完成签到 ,获得积分10
6秒前
Tal完成签到,获得积分10
6秒前
7秒前
7秒前
lwl完成签到,获得积分10
10秒前
Vegeta完成签到 ,获得积分10
10秒前
默默的战斗机完成签到,获得积分10
10秒前
susan完成签到,获得积分10
12秒前
ahui完成签到 ,获得积分10
12秒前
踏水追风完成签到,获得积分10
12秒前
樱香音子完成签到,获得积分10
13秒前
张立佳完成签到 ,获得积分10
13秒前
威武冷雪完成签到,获得积分10
13秒前
hkh发布了新的文献求助10
15秒前
goldNAN完成签到 ,获得积分10
15秒前
18秒前
三石完成签到 ,获得积分10
19秒前
黑暗与黎明完成签到 ,获得积分10
19秒前
範範完成签到,获得积分10
20秒前
冷冷暴力完成签到,获得积分10
20秒前
NN完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
22秒前
上官若男应助科研通管家采纳,获得30
22秒前
小学生熊大完成签到,获得积分10
23秒前
拂晓完成签到,获得积分10
23秒前
ChandlerZB完成签到,获得积分10
24秒前
芒果完成签到,获得积分10
24秒前
韭菜发布了新的文献求助10
26秒前
磁带机完成签到,获得积分10
26秒前
Beyond完成签到,获得积分10
26秒前
无限翅膀完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907032
求助须知:如何正确求助?哪些是违规求助? 3452454
关于积分的说明 10870422
捐赠科研通 3178338
什么是DOI,文献DOI怎么找? 1755892
邀请新用户注册赠送积分活动 849170
科研通“疑难数据库(出版商)”最低求助积分说明 791387