亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the delivery of palliative care through predictive modeling and healthcare informatics

工作流程 医学 缓和医疗 信息学 医疗保健 健康信息学 急诊分诊台 医疗急救 护理部 计算机科学 数据库 公共卫生 经济增长 电气工程 工程类 经济
作者
Dennis H. Murphree,Patrick M. Wilson,Shusaku Asai,Daniel Quest,Yaxiong Lin,Piyush Mukherjee,Nirmal Chhugani,Jacob J. Strand,Gabriel Demuth,David W. Mead,Brian Wright,Andrew M. Harrison,Jalal Soleimani,Vitaly Herasevich,Brian W. Pickering,Curtis B. Storlie
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:28 (6): 1065-1073 被引量:47
标识
DOI:10.1093/jamia/ocaa211
摘要

Abstract Objective Access to palliative care (PC) is important for many patients with uncontrolled symptom burden from serious or complex illness. However, many patients who could benefit from PC do not receive it early enough or at all. We sought to address this problem by building a predictive model into a comprehensive clinical framework with the aims to (i) identify in-hospital patients likely to benefit from a PC consult, and (ii) intervene on such patients by contacting their care team. Materials and Methods Electronic health record data for 68 349 inpatient encounters in 2017 at a large hospital were used to train a model to predict the need for PC consult. This model was published as a web service, connected to institutional data pipelines, and consumed by a downstream display application monitored by the PC team. For those patients that the PC team deems appropriate, a team member then contacts the patient’s corresponding care team. Results Training performance AUC based on a 20% holdout validation set was 0.90. The most influential variables were previous palliative care, hospital unit, Albumin, Troponin, and metastatic cancer. The model has been successfully integrated into the clinical workflow making real-time predictions on hundreds of patients per day. The model had an “in-production” AUC of 0.91. A clinical trial is currently underway to assess the effect on clinical outcomes. Conclusions A machine learning model can effectively predict the need for an inpatient PC consult and has been successfully integrated into practice to refer new patients to PC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal发布了新的文献求助30
36秒前
爆米花应助Crystal采纳,获得10
47秒前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
看不了一点文献应助Nan采纳,获得10
2分钟前
怕黑乌冬面完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Nan发布了新的文献求助10
2分钟前
jader发布了新的文献求助30
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
wss123发布了新的文献求助10
3分钟前
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
wss123完成签到,获得积分10
4分钟前
在水一方应助矢思然采纳,获得10
4分钟前
贪玩的万仇完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
矢思然发布了新的文献求助10
4分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
swordlee发布了新的文献求助100
6分钟前
6分钟前
顾矜应助会飞的蜗牛采纳,获得10
7分钟前
7分钟前
ECD发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
看不了一点文献应助LIXI采纳,获得10
7分钟前
ECD完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
JUST发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5408008
求助须知:如何正确求助?哪些是违规求助? 4525395
关于积分的说明 14101764
捐赠科研通 4439320
什么是DOI,文献DOI怎么找? 2436707
邀请新用户注册赠送积分活动 1428692
关于科研通互助平台的介绍 1406795