Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis

隐写分析技术 计算机科学 联营 卷积神经网络 棱锥(几何) 人工智能 模式识别(心理学) 代表(政治) 卷积(计算机科学) 隐写术 核(代数) 嵌入 数学 人工神经网络 离散数学 政治 政治学 法学 几何学
作者
Ru Zhang,Feng Zhu,Jianyi Liu,Gongshen Liu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 1138-1150 被引量:236
标识
DOI:10.1109/tifs.2019.2936913
摘要

For steganalysis, many studies showed that convolutional neural network (CNN) has better performances than the two-part structure of traditional machine learning methods. Existing CNN architectures use various tricks to improve the performance of steganalysis, such as fixed convolutional kernels, the absolute value layer, data augmentation and the domain knowledge. However, some designing of the network structure were not extensively studied so far, such as different convolutions (inception, xception, etc.) and variety ways of pooling(spatial pyramid pooling, etc.). In this paper, we focus on designing a new CNN network structure to improve detection accuracy of spatial-domain steganography. First, we use $3\times 3$ kernels instead of the traditional $5\times 5$ kernels and optimize convolution kernels in the preprocessing layer. The smaller convolution kernels are used to reduce the number of parameters and model the features in a small local region. Next, we use separable convolutions to utilize channel correlation of the residuals, compress the image content and increase the signal-to-noise ratio (between the stego signal and the image signal). Then, we use spatial pyramid pooling (SPP) to aggregate the local features and enhance the representation ability of features by multi-level pooling. Finally, data augmentation is adopted to further improve network performance. The experimental results show that the proposed CNN structure is significantly better than other five methods such as SRM, Ye-Net, Xu-Net, Yedroudj-Net and SRNet, when it is used to detect three spatial algorithms such as WOW, S-UNIWARD and HILL with a wide variety of datasets and payloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轶Y发布了新的文献求助30
1秒前
1秒前
3秒前
lijunliang完成签到,获得积分10
4秒前
5秒前
LHH0411发布了新的文献求助10
5秒前
兰兰完成签到,获得积分10
5秒前
6秒前
geyuyang发布了新的文献求助10
6秒前
7秒前
追梦的小小新完成签到,获得积分20
7秒前
8秒前
9秒前
aliu完成签到,获得积分10
9秒前
9秒前
樱桃儿发布了新的文献求助10
10秒前
ddddd完成签到,获得积分10
11秒前
12秒前
piaopiao2021发布了新的文献求助10
12秒前
qq发布了新的文献求助10
13秒前
Miyya完成签到 ,获得积分10
14秒前
15秒前
懒羊羊完成签到,获得积分10
17秒前
细心雨兰发布了新的文献求助10
18秒前
合适靖儿完成签到 ,获得积分10
19秒前
20秒前
22秒前
22秒前
Akim应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
乐观小之应助科研通管家采纳,获得10
22秒前
呆萌鱼应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
23秒前
geyuyang完成签到,获得积分10
23秒前
青椒肉丝完成签到,获得积分10
25秒前
amumu完成签到,获得积分10
25秒前
28秒前
S月小小完成签到,获得积分10
28秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825640
求助须知:如何正确求助?哪些是违规求助? 3367823
关于积分的说明 10447914
捐赠科研通 3087251
什么是DOI,文献DOI怎么找? 1698546
邀请新用户注册赠送积分活动 816807
科研通“疑难数据库(出版商)”最低求助积分说明 769973