清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Profit-Maximized Collaborative Computation Offloading and Resource Allocation in Distributed Cloud and Edge Computing Systems

计算机科学 云计算 计算卸载 边缘计算 服务器 分布式计算 边缘设备 Lyapunov优化 计算机网络 资源配置 计算 最优化问题 移动边缘计算 操作系统 算法 人工智能 李雅普诺夫指数 混乱的 Lyapunov重新设计
作者
Haitao Yuan,MengChu Zhou
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (3): 1277-1287 被引量:168
标识
DOI:10.1109/tase.2020.3000946
摘要

Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the network edge in close proximity to users. However, nodes in the edge have limited energy and resources. Completely running tasks in the edge may cause poor performance. Cloud data centers (CDCs) have rich resources for executing tasks, but they are located in places far away from users. CDCs lead to long transmission delays and large financial costs for utilizing resources. Therefore, it is essential to smartly offload users’ tasks between a CDC layer and an edge computing layer. This work proposes a cloud and edge computing system, which has a terminal layer, edge computing layer, and CDC layer. Based on it, this work designs a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are strictly met. In each time slot, this work jointly considers CPU, memory, and bandwidth resources, load balance of all heterogeneous nodes in the edge layer, maximum amount of energy, maximum number of servers, and task queue stability in the CDC layer. Considering the abovementioned factors, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based migrating birds optimization procedure to obtain a close-to-optimal solution. The proposed method achieves joint optimization of computation offloading between CDC and edge, and resource allocation in CDC. Realistic data-based simulation results demonstrate that it realizes higher profit than its peers. Note to Practitioners —This work considers the joint optimization of computation offloading between Cloud data center (CDC) and edge computing layers, and resource allocation in CDC. It is important to maximize the profit of distributed cloud and edge computing systems by optimally scheduling all tasks between them given user-specific response time limits of tasks. It is challenging to execute them in nodes in the edge computing layer because their computation resources and battery capacities are often constrained and heterogeneous. Current offloading methods fail to jointly optimize computation offloading and resource allocation for nodes in the edge and servers in CDC. They are insufficient and coarse-grained to schedule arriving tasks. In this work, a novel algorithm is proposed to maximize the profit of distributed cloud and edge computing systems while meeting response time limits of tasks. It explicitly specifies the task service rate and the selected node for each task in each time slot by considering resource limits, load balance requirement, and processing capacities of nodes in the edge, and server and energy constraints in CDC. Real-life data-driven simulations show that the proposed method realizes a larger profit than several typical offloading strategies. It can be readily implemented and incorporated into large-scale industrial computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
airtermis完成签到 ,获得积分10
1秒前
3秒前
Dong完成签到 ,获得积分10
23秒前
小白白完成签到 ,获得积分10
24秒前
laohu完成签到,获得积分10
30秒前
Lj完成签到,获得积分10
36秒前
38秒前
没头脑和不高兴完成签到 ,获得积分10
43秒前
MHCL完成签到 ,获得积分10
44秒前
44秒前
45秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
所所应助科研通管家采纳,获得10
45秒前
45秒前
敞敞亮亮完成签到 ,获得积分10
47秒前
wcx发布了新的文献求助10
49秒前
风中的碧空完成签到,获得积分10
51秒前
无辜的梦竹完成签到 ,获得积分10
53秒前
注水萝卜完成签到 ,获得积分10
54秒前
Amon完成签到 ,获得积分10
55秒前
无辜的行云完成签到 ,获得积分0
58秒前
58秒前
wcx完成签到,获得积分10
1分钟前
火星上的之卉完成签到 ,获得积分10
1分钟前
绝对草草完成签到,获得积分10
1分钟前
Jack发布了新的文献求助10
1分钟前
zhilianghui0807完成签到 ,获得积分10
1分钟前
在水一方应助Jack采纳,获得10
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
1分钟前
Alone离殇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
尉迟明风完成签到 ,获得积分10
1分钟前
wyhhh发布了新的文献求助10
2分钟前
2分钟前
拼搏的败完成签到 ,获得积分10
2分钟前
机灵雨完成签到 ,获得积分10
2分钟前
Hindiii完成签到,获得积分10
2分钟前
马婷婷完成签到,获得积分10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840870
求助须知:如何正确求助?哪些是违规求助? 3382770
关于积分的说明 10526498
捐赠科研通 3102624
什么是DOI,文献DOI怎么找? 1708930
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632