Understanding cities with machine eyes: A review of deep computer vision in urban analytics

计算机科学 多样性(控制论) 自动化 数据科学 人机交互 人工智能 机器视觉 分析 工程类 机械工程
作者
Mohamed R. Ibrahim,James Haworth,Tao Cheng
出处
期刊:Cities [Elsevier]
卷期号:96: 102481-102481 被引量:99
标识
DOI:10.1016/j.cities.2019.102481
摘要

Modelling urban systems has interested planners and modellers for decades. Different models have been achieved relying on mathematics, cellular automation, complexity, and scaling. While most of these models tend to be a simplification of reality, today within the paradigm shifts of artificial intelligence across the different fields of science, the applications of computer vision show promising potential in understanding the realistic dynamics of cities. While cities are complex by nature, computer vision shows progress in tackling a variety of complex physical and non-physical visual tasks. In this article, we review the tasks and algorithms of computer vision and their applications in understanding cities. We attempt to subdivide computer vision algorithms into tasks, and cities into layers to show evidence of where computer vision is intensively applied and where further research is needed. We focus on highlighting the potential role of computer vision in understanding urban systems related to the built environment, natural environment, human interaction, transportation, and infrastructure. After showing the diversity of computer vision algorithms and applications, the challenges that remain in understanding the integration between these different layers of cities and their interactions with one another relying on deep learning and computer vision. We also show recommendations for practice and policy-making towards reaching AI-generated urban policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8yNl3L完成签到,获得积分10
1秒前
1秒前
秋雪瑶应助pazhao采纳,获得10
1秒前
1秒前
Catalysis123完成签到,获得积分10
2秒前
3秒前
8R60d8应助可乐采纳,获得10
5秒前
5秒前
柠檬味电子对儿完成签到,获得积分10
6秒前
李健的小迷弟应助pazhao采纳,获得10
7秒前
天天快乐应助归海若采纳,获得10
8秒前
权秋尽完成签到,获得积分10
8秒前
LLLLLL发布了新的文献求助10
9秒前
侯晓宝完成签到 ,获得积分10
13秒前
丘比特应助pazhao采纳,获得10
14秒前
耀bz发布了新的文献求助10
15秒前
安详的翩跹完成签到,获得积分10
15秒前
16秒前
优雅的善若关注了科研通微信公众号
17秒前
风中的安双完成签到,获得积分10
17秒前
Ava应助迷路穆拉迪力采纳,获得10
17秒前
20秒前
KYG发布了新的文献求助10
20秒前
20秒前
文艺蛋挞完成签到,获得积分10
20秒前
ZjieY完成签到,获得积分10
20秒前
Akim应助pazhao采纳,获得10
20秒前
深情安青应助样寒采纳,获得10
23秒前
文艺蛋挞发布了新的文献求助10
23秒前
Owen应助pazhao采纳,获得10
25秒前
CodeCraft应助凌感动采纳,获得10
27秒前
30秒前
酷酷纸飞机完成签到,获得积分10
30秒前
思源应助pazhao采纳,获得10
30秒前
32秒前
CWEI完成签到,获得积分10
33秒前
33秒前
田様应助ebby采纳,获得10
33秒前
李爱国应助152455采纳,获得10
35秒前
宋有容发布了新的文献求助10
35秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2480278
求助须知:如何正确求助?哪些是违规求助? 2142806
关于积分的说明 5464309
捐赠科研通 1865586
什么是DOI,文献DOI怎么找? 927427
版权声明 562931
科研通“疑难数据库(出版商)”最低求助积分说明 496183