Anomaly Detection Based on Convolutional Recurrent Autoencoder for IoT Time Series

滑动窗口协议 计算机科学 自编码 异常检测 人工智能 特征提取 预处理器 数据挖掘 特征(语言学) 数据预处理 窗口(计算) 模式识别(心理学) 深度学习 卷积神经网络 循环神经网络 时间序列 机器学习 人工神经网络 操作系统 哲学 语言学
作者
Chunyong Yin,Sun Zhang,Jin Wang,Naixue Xiong
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (1): 112-122 被引量:238
标识
DOI:10.1109/tsmc.2020.2968516
摘要

Internet of Things (IoT) realizes the interconnection of heterogeneous devices by the technology of wireless and mobile communication. The data of target regions are collected by widely distributed sensing devices and transmitted to the processing center for aggregation and analysis as the basis of IoT. The quality of IoT services usually depends on the accuracy and integrity of data. However, due to the adverse environment or device defects, the collected data will be anomalous. Therefore, the effective method of anomaly detection is the crucial issue for guaranteeing service quality. Deep learning is one of the most concerned technology in recent years which realizes automatic feature extraction from raw data. In this article, the integrated model of the convolutional neural network (CNN) and recurrent autoencoder is proposed for anomaly detection. Simple combination of CNN and autoencoder cannot improve classification performance, especially, for time series. Therefore, we utilize the two-stage sliding window in data preprocessing to learn better representations. Based on the characteristics of the Yahoo Webscope S5 dataset, raw time series with anomalous points are extended to fixed-length sequences with normal or anomaly label via the first-stage sliding window. Then, each sequence is transformed into continuous time-dependent subsequences by another smaller sliding window. The preprocessing of the two-stage sliding window can be considered as low-level temporal feature extraction, and we empirically prove that the preprocessing of the two-stage sliding window will be useful for high-level feature extraction in the integrated model. After data preprocessing, spatial and temporal features are extracted in CNN and recurrent autoencoder for the classification in fully connected networks. Empiric results show that the proposed model has better performances on multiple classification metrics and achieves preferable effect on anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗红葡萄完成签到 ,获得积分10
6秒前
陶醉的雪柳完成签到 ,获得积分10
6秒前
经纲完成签到 ,获得积分0
8秒前
YangYue完成签到,获得积分10
11秒前
响铃完成签到,获得积分10
14秒前
WWX完成签到 ,获得积分10
14秒前
cdercder应助YangYue采纳,获得20
17秒前
17秒前
顺心醉蝶完成签到 ,获得积分10
17秒前
nn完成签到 ,获得积分10
20秒前
Xu完成签到,获得积分10
21秒前
刘怀蕊发布了新的文献求助10
21秒前
YoYo完成签到 ,获得积分10
21秒前
余味应助科研通管家采纳,获得10
23秒前
余味应助科研通管家采纳,获得10
23秒前
cdercder应助科研通管家采纳,获得10
23秒前
Yiling完成签到,获得积分10
23秒前
刘怀蕊完成签到,获得积分10
27秒前
denty完成签到,获得积分10
33秒前
38秒前
Bismarck完成签到,获得积分10
38秒前
Fashioner8351完成签到,获得积分10
38秒前
41秒前
nn关注了科研通微信公众号
42秒前
自然的衫完成签到 ,获得积分10
44秒前
猪猪完成签到 ,获得积分10
47秒前
科研执修完成签到,获得积分10
53秒前
相爱就永远在一起完成签到,获得积分10
53秒前
文心同学完成签到,获得积分0
57秒前
御风完成签到,获得积分10
59秒前
qi0625完成签到,获得积分10
1分钟前
儒雅的千秋完成签到,获得积分10
1分钟前
欣慰的以云完成签到 ,获得积分10
1分钟前
孤鸿影98完成签到 ,获得积分10
1分钟前
小蟑螂完成签到,获得积分10
1分钟前
sscss完成签到,获得积分10
1分钟前
蕉鲁诺蕉巴纳完成签到,获得积分0
1分钟前
星海种花完成签到 ,获得积分10
1分钟前
不可靠月亮完成签到,获得积分10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726