Unraveling the Charge-Storage Mechanism in High-Performance Zinc-Ion Hybrid Supercapacitors

超级电容器 储能 功率密度 阳极 材料科学 纳米技术 电容器 法拉第效率 阴极 电化学 电气工程 化学 电压 功率(物理) 工程类 物理 电极 物理化学 量子力学
作者
Kwadwo Asare Owusu,Liqiang Mai
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (4): 582-582
标识
DOI:10.1149/ma2020-014582mtgabs
摘要

The crucial request for alternative clean energy technologies to replace conventional fossil fuels and drive technological advancement in consumer and wearable electronics, electric vehicles etc. has led to great advancement in electrochemical energy storage systems research. The lithium-ion battery possesses high energy density while the supercapacitor can guarantee high power density. However, modern technologies such as integrated solar and wind energy solutions require a blend of high energy and power density devices, which is a great challenge. Presently, there is increased research interest in aqueous hybrid supercapacitors, a device capable of combining the high energy density of rechargeable batteries and the high-power density of electric-double layer capacitors. The current hotspot of the hybrid supercapacitor research is the zinc-ion hybrid supercapacitor owing to its several advantages such as the abundance of Zinc resource over lithium, high theoretical capacity of Zn, double charge transfer compared to univalent Lithium, environmental safety and high energy/power density. Wang et al first reported the carbon zinc-ion hybrid supercapacitor in 2018 by directly using zinc foil as anode and bio-carbon as cathode to realize long stability up to 20000 cycles. Next, Dong et al also developed an activated carbon-based zinc-ion hybrid supercapacitor which achieved a high energy density of ~84 Wh kg -1 and power density of 14.9 kW kg -1 in a potential window of 0.2 – 1.8 V. Despite the rapid advances over a short period in this class of energy storage devices, some problems still exist. The coulombic efficiency of Zinc-ion hybrid supercapacitors is inferior in low-cost ZnSO 4 electrolytes owing to side reactions between the electrolyte and the Zn anode, while the mass loading of commonly used carbon cathode is extremely low (less than 2 mg cm -2 ). Importantly, the charge storage mechanism in zinc-ion hybrid supercapacitors is unclear. In this work, we developed high performance zinc-ion hybrid supercapacitors with superior charge storage, improved rate capability, and high power and energy density using a high mass density carbon anode with superior capacitive/pseudocapacitive storage. We successfully reveal that the charge storage of zinc-ion hybrid supercapacitors is extensively limited in zinc sulfate electrolytes and successfully address the coulombic efficiency problem using by modifying the electrolyte. Finally, using techniques such as in-situ Raman spectroscopy and X-ray diffraction analysis, we probe the charge storage mechanism and unravel a double cation charge storage mechanism, resulting in high energy density and extended potential window. Finally, our work provides crucial insights into understanding the charge storage process of zinc-ion hybrid supercapacitors and designing hybrid supercapacitors with new material chemistries. References: 1. Wang, M. Wang, Y. Tang, Energy Storage Mater . 2018 , 13, 7. 2. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q. H. Yang, F. Kang, Energy Storage Mater. 2018 , 13, 96. 3. Sun, H. Yang, G. Zhang, J. Gao, X. Jin, Y. Zhao, L. Jiang, L. Qu, Energy Environ. Sci. 2018 , 11, 3367. 4. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q. H. Yang, F. Kang, Energy Storage Mater. 2018 , 13, 96. 5. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018 , 118, 9233.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
往往超可爱完成签到 ,获得积分10
2秒前
米米发布了新的文献求助10
2秒前
7秒前
jinx123456完成签到,获得积分10
8秒前
15秒前
大尾巴完成签到 ,获得积分10
16秒前
纵念发布了新的文献求助10
18秒前
20秒前
研友_Y59785应助光亮的初曼采纳,获得10
22秒前
24秒前
bbsheng发布了新的文献求助10
26秒前
27秒前
纵念完成签到,获得积分10
28秒前
handsomecat完成签到,获得积分10
31秒前
追寻凌晴发布了新的文献求助30
31秒前
124完成签到,获得积分10
32秒前
梅子完成签到,获得积分10
37秒前
畅跑daily完成签到,获得积分10
38秒前
爆米花应助邀月采纳,获得10
40秒前
香蕉觅云应助聪慧雪糕采纳,获得10
41秒前
yang应助追寻凌晴采纳,获得10
44秒前
难过大神完成签到,获得积分10
47秒前
48秒前
48秒前
zhang完成签到,获得积分10
49秒前
阿娟儿发布了新的文献求助10
49秒前
50秒前
聪慧雪糕发布了新的文献求助10
52秒前
庸人自扰完成签到,获得积分10
52秒前
Chen发布了新的文献求助10
53秒前
Orange应助虚幻的安柏采纳,获得10
53秒前
57秒前
光亮的初曼完成签到,获得积分20
1分钟前
充电宝应助半山采纳,获得10
1分钟前
1分钟前
zy完成签到,获得积分10
1分钟前
肥四发布了新的文献求助10
1分钟前
顾矜应助mkljl采纳,获得10
1分钟前
luo应助独特翠丝采纳,获得20
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780433
求助须知:如何正确求助?哪些是违规求助? 3325851
关于积分的说明 10224474
捐赠科研通 3040916
什么是DOI,文献DOI怎么找? 1669131
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758653