Self-co-attention neural network for anatomy segmentation in whole breast ultrasound

分割 计算机科学 人工智能 深度学习 背景(考古学) 编码器 块(置换群论) 人工神经网络 模式识别(心理学) 计算机视觉 数学 几何学 生物 操作系统 古生物学
作者
Baiying Lei,Shan Huang,Hang Li,Ran Li,Cheng Bian,Yi‐Hong Chou,Jing Qin,Peng Zhou,Xuehao Gong,Jie‐Zhi Cheng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:64: 101753-101753 被引量:57
标识
DOI:10.1016/j.media.2020.101753
摘要

The automated whole breast ultrasound (AWBUS) is a new breast imaging technique that can depict the whole breast anatomy. To facilitate the reading of AWBUS images and support the breast density estimation, an automatic breast anatomy segmentation method for AWBUS images is proposed in this study. The problem at hand is quite challenging as it needs to address issues of low image quality, ill-defined boundary, large anatomical variation, etc. To address these issues, a new deep learning encoder-decoder segmentation method based on a self-co-attention mechanism is developed. The self-attention mechanism is comprised of spatial and channel attention module (SC) and embedded in the ResNeXt (i.e., Res-SC) block in the encoder path. A non-local context block (NCB) is further incorporated to augment the learning of high-level contextual cues. The decoder path of the proposed method is equipped with the weighted up-sampling block (WUB) to attain class-specific better up-sampling effect. Meanwhile, the co-attention mechanism is also developed to improve the segmentation coherence among two consecutive slices. Extensive experiments are conducted with comparison to several the state-of-the-art deep learning segmentation methods. The experimental results corroborate the effectiveness of the proposed method on the difficult breast anatomy segmentation problem on AWBUS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
香蕉觅云应助hzauhzau采纳,获得10
6秒前
7秒前
7秒前
打打应助cpxliteratur采纳,获得10
8秒前
9秒前
情怀应助暴打小赵采纳,获得10
9秒前
思源应助细致的武人采纳,获得10
9秒前
10秒前
十年完成签到 ,获得积分10
12秒前
tcheng发布了新的文献求助10
12秒前
13秒前
NovaZ完成签到,获得积分10
13秒前
清脆代桃完成签到 ,获得积分0
14秒前
犹豫的世倌完成签到,获得积分10
14秒前
14秒前
15秒前
谁知道呢完成签到 ,获得积分10
15秒前
乐乐应助yhx采纳,获得10
16秒前
上官若男应助kids采纳,获得10
17秒前
Bai完成签到,获得积分10
17秒前
孟君发布了新的文献求助10
17秒前
俭朴的易烟完成签到,获得积分10
17秒前
煜钧发布了新的文献求助60
17秒前
科研通AI5应助lvhuiqi采纳,获得30
18秒前
19秒前
19秒前
王子发布了新的文献求助10
19秒前
null应助宾克斯采纳,获得200
19秒前
Bai发布了新的文献求助10
20秒前
20秒前
21秒前
hzauhzau发布了新的文献求助10
21秒前
灯哥发布了新的文献求助10
24秒前
暴打小赵发布了新的文献求助10
24秒前
韩骞发布了新的文献求助10
24秒前
24秒前
孟君完成签到,获得积分20
25秒前
米酒汤圆发布了新的文献求助10
25秒前
田様应助Lxy采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4466869
求助须知:如何正确求助?哪些是违规求助? 3928410
关于积分的说明 12190126
捐赠科研通 3581657
什么是DOI,文献DOI怎么找? 1968208
邀请新用户注册赠送积分活动 1006621
科研通“疑难数据库(出版商)”最低求助积分说明 900772