Advances in infrared spectroscopy combined with artificial neural network for the authentication and traceability of food

可追溯性 认证(法律) 人工神经网络 计算机科学 食品质量 深度学习 人工智能 生化工程 数据科学 风险分析(工程) 工程类 计算机安全 业务 食品科学 化学 软件工程
作者
Ning Liang,Sashuang Sun,Chu Zhang,Yong He,Zhengjun Qiu
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:62 (11): 2963-2984 被引量:72
标识
DOI:10.1080/10408398.2020.1862045
摘要

The authentication and traceability of food attract more attention due to the increasing consumer awareness regarding nutrition and health, being a new hotspot of food science. Infrared spectroscopy (IRS) combined with shallow neural network has been widely proven to be an effective food analysis technology. As an advanced deep learning technology, deep neural network has also been explored to analyze and solve food-related IRS problems in recent years. The present review begins with brief introductions to IRS and artificial neural network (ANN), including shallow neural network and deep neural network. More notably, it emphasizes the comprehensive overview of the advances of the technology combined IRS with ANN for the authentication and traceability of food, based on relevant literature from 2014 to early 2020. In detail, the types of IRS and ANN, modeling processes, experimental results, and model comparisons in related studies are described to set forth the usage and performance of the combined technology for food analysis. The combined technology shows excellent ability to authenticate food quality and safety, involving chemical components, freshness, microorganisms, damages, toxic substances, and adulteration. As well, it shows excellent performance in the traceability of food variety and origin. The advantages, current limitations, and future trends of the combined technology are further discussed to provide a thoughtful viewpoint on the challenges and expectations of online applications for the authentication and traceability of food.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助项初蝶采纳,获得10
1秒前
淡泊宁静完成签到,获得积分10
1秒前
韩嘉莉发布了新的文献求助10
1秒前
liying发布了新的文献求助20
1秒前
量子星尘发布了新的文献求助10
2秒前
zy发布了新的文献求助10
2秒前
75986686发布了新的文献求助10
3秒前
3秒前
3秒前
Jasin驳回了orixero应助
4秒前
1s发布了新的文献求助10
4秒前
啊强完成签到 ,获得积分10
5秒前
5秒前
CHENHL完成签到,获得积分10
6秒前
7秒前
Ava应助淡定的竺采纳,获得30
7秒前
ningoz发布了新的文献求助10
7秒前
王思甜完成签到,获得积分10
7秒前
haibing发布了新的文献求助30
7秒前
9秒前
9秒前
10秒前
10秒前
别封我了行吗完成签到,获得积分10
11秒前
zhaojiantgu发布了新的文献求助10
13秒前
轻松白开水完成签到 ,获得积分10
13秒前
aka2012发布了新的文献求助10
13秒前
1s完成签到,获得积分20
13秒前
woshidahunzi完成签到,获得积分10
14秒前
14秒前
violetlishu发布了新的文献求助10
15秒前
15秒前
快乐的海亦完成签到,获得积分10
15秒前
调皮伯云发布了新的文献求助20
15秒前
16秒前
端庄的芹发布了新的文献求助10
16秒前
17秒前
Frank完成签到,获得积分0
17秒前
haibing完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070231
求助须知:如何正确求助?哪些是违规求助? 4291424
关于积分的说明 13370277
捐赠科研通 4111739
什么是DOI,文献DOI怎么找? 2251660
邀请新用户注册赠送积分活动 1256787
关于科研通互助平台的介绍 1189405