Salient Object Detection via Integrity Learning

突出 计算机科学 人工智能 目标检测 模式识别(心理学) 对象(语法) 自然语言处理 计算机视觉
作者
Mingchen Zhuge,Deng-Ping Fan,Nian Liu,Dingwen Zhang,Dong Xu,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:259
标识
DOI:10.1109/tpami.2022.3179526
摘要

Although current salient object detection (SOD) works have achieved significant progress, they are limited when it comes to the integrity of the predicted salient regions. We define the concept of integrity at both a micro and macro level. Specifically, at the micro level, the model should highlight all parts that belong to a certain salient object. Meanwhile, at the macro level, the model needs to discover all salient objects in a given image. To facilitate integrity learning for SOD, we design a novel Integrity Cognition Network (ICON), which explores three important components for learning strong integrity features. 1) Unlike existing models, which focus more on feature discriminability, we introduce a diverse feature aggregation (DFA) component to aggregate features with various receptive fields (i.e., kernel shape and context) and increase feature diversity. Such diversity is the foundation for mining the integral salient objects. 2) Based on the DFA features, we introduce an integrity channel enhancement (ICE) component with the goal of enhancing feature channels that highlight the integral salient objects, while suppressing the other distracting ones. 3) After extracting the enhanced features, the part-whole verification (PWV) method is employed to determine whether the part and whole object features have strong agreement. Such part-whole agreements can further improve the micro-level integrity for each salient object. To demonstrate the effectiveness of our ICON, comprehensive experiments are conducted on seven challenging benchmarks. Our ICON outperforms the baseline methods in terms of a wide range of metrics. Notably, our ICON achieves ∼ 10% relative improvement over the previous best model in terms of average false negative ratio (FNR), on six datasets. Codes and results are available at: https://github.com/mczhuge/ICON.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助yang采纳,获得10
2秒前
2秒前
bearbiscuit完成签到,获得积分10
3秒前
科目三应助王旺采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
李在佛甚么关注了科研通微信公众号
6秒前
7秒前
今后应助毕瑞欣采纳,获得10
7秒前
慕青应助曾阿牛采纳,获得10
7秒前
科研通AI5应助薯条采纳,获得30
8秒前
wanci应助Folger采纳,获得30
8秒前
Alpha发布了新的文献求助10
8秒前
laoleigang完成签到,获得积分10
10秒前
lorryliu发布了新的文献求助10
10秒前
纯真沛儿发布了新的文献求助10
10秒前
xxxx发布了新的文献求助10
10秒前
XXY完成签到,获得积分10
11秒前
华仔应助橙子采纳,获得10
11秒前
情怀应助crillzlol采纳,获得10
11秒前
12秒前
12秒前
lemonyu发布了新的文献求助10
13秒前
有趣的灵魂完成签到,获得积分10
14秒前
自由十三完成签到 ,获得积分10
14秒前
浮游给李fr的求助进行了留言
15秒前
17秒前
鱼子西发布了新的文献求助10
17秒前
18秒前
19秒前
一只鱼完成签到,获得积分10
19秒前
乐乐应助火焰鼠采纳,获得10
19秒前
20秒前
20秒前
聪慧小霜应助木木采纳,获得10
20秒前
烟花应助木木采纳,获得10
20秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972