Reciprocal Regulation of Mitochondrial Fission and Fusion

裂变 线粒体分裂 线粒体 互惠的 线粒体融合 融合 线粒体DNA 生物 细胞生物学 化学 物理 遗传学 核物理学 基因 中子 哲学 语言学
作者
Rasha Sabouny,Timothy E. Shutt
出处
期刊:Trends in Biochemical Sciences [Elsevier BV]
卷期号:45 (7): 564-577 被引量:163
标识
DOI:10.1016/j.tibs.2020.03.009
摘要

Mitochondria are dynamic organelles constantly undergoing fusion and fission events. The morphology of the mitochondrial network is determined by the balance between fusion and fission events. Changes in mitochondrial morphology facilitate the integration of mitochondrial function with physiological changes in the cell. Hyperfused mitochondrial networks can be due to increased fusion and/or decreased fission. Fragmented mitochondrial networks can be a result of either more fission and/or reduced fusion. An emerging trend in mitochondrial network remodeling is the reciprocal regulation of fission and fusion, where regulatory pathways influence both processes. The dynamic processes of mitochondrial fission and fusion are tightly regulated, determine mitochondrial shape, and influence mitochondrial functions. For example, fission and fusion mediate energy output, production of reactive oxygen species (ROS), and mitochondrial quality control. As our understanding of the molecular machinery and mechanisms regulating dynamic changes in the mitochondrial network continues to grow, we are beginning to unravel important signaling pathways that integrate physiological cues to modulate mitochondrial morphology and function. Here, we highlight reciprocal regulation of mitochondrial fusion and fission as an emerging trend in the regulation of mitochondrial function. The dynamic processes of mitochondrial fission and fusion are tightly regulated, determine mitochondrial shape, and influence mitochondrial functions. For example, fission and fusion mediate energy output, production of reactive oxygen species (ROS), and mitochondrial quality control. As our understanding of the molecular machinery and mechanisms regulating dynamic changes in the mitochondrial network continues to grow, we are beginning to unravel important signaling pathways that integrate physiological cues to modulate mitochondrial morphology and function. Here, we highlight reciprocal regulation of mitochondrial fusion and fission as an emerging trend in the regulation of mitochondrial function. proteolytic core of the proteasome, which can degrade oxidized proteins and proteins with intrinsically unstructured domains in a ubiquitin-independent manner. comprises the 20S proteolytic core, responsible for degrading proteins, which is capped with the 19S regulatory complex, responsible for recognizing ubiquitinated substrates. PTM that involves the addition of an acetyl group to specific lysine residues on target proteins. nonbilayer-forming mitochondrial phospholipid found primarily in the IMM. mitochondrial inner membrane invaginations; remodeling cristae morphology influences mitochondrial energetic output and susceptibility to apoptosis. mitochondrial genome; 16.6 kb circular genome present in 100–1000 copies per cell, encoding 13 mitochondrial proteins, two mitochondrial ribosomal RNAs, and 22 transfer RNAs. removal of dysfunctional mitochondria via autophagy. PTM that is dependent on nutrient availability and involves the addition of O-GlcNAc to target proteins by O-GlcNAc transferase. an oxidative environment that is the result increased production or accumulation of ROS. nonbilayer-forming phospholipid that promotes membrane curvature; important CL precursor. PTM that involves the reversible addition of phosphate to tyrosine, threonine, or serine residues on target proteins by a protein kinase. highly reactive compounds produced during mitochondrial respiration, such as superoxide, hydrogen peroxide, and hydroxyl radicals; ROS are important for retrograde cellular signaling; however, high levels of ROS can damage proteins, DNA, and lipids. mode of cellular communication where ROS propagate important information that modulates cellular function. formation of cytoprotective hyperfused mitochondrial networks in response to acute stress stimuli (e.g., oxidative stress, cycloheximide, UV irradiation, and nutrient starvation). PTM that involves addition of small ubiquitin-like modifier (SUMO) moieties to target proteins by SUMO ligases; SUMO modifications can promote protein stability and functional interactions. PTM that involves covalent addition of ubiquitin (Ub) (a 76-amino acid polypeptide) to specific lysine residues on target proteins by Ub ligases; poly-ub chains typically promote protein degradation by the 26S proteasome, and mono-ub can promote protein–protein interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevin完成签到,获得积分10
1秒前
领导范儿应助同学少年2021采纳,获得10
1秒前
Biophilia发布了新的文献求助50
1秒前
汉堡包应助lishanner采纳,获得10
1秒前
Amber完成签到,获得积分10
2秒前
2秒前
2秒前
小高发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
hugh完成签到,获得积分10
5秒前
6秒前
糖醋排骨完成签到 ,获得积分10
6秒前
6秒前
gfhdf完成签到,获得积分10
6秒前
科研助手6应助wjy321采纳,获得10
7秒前
lcj1014完成签到,获得积分10
7秒前
7秒前
weiweiwu12发布了新的文献求助10
8秒前
8秒前
铭铭铭完成签到,获得积分10
9秒前
9秒前
joey完成签到,获得积分10
9秒前
ccc完成签到,获得积分10
9秒前
访云完成签到 ,获得积分10
9秒前
chandlerwong完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
躺平girl发布了新的文献求助10
11秒前
轻松沛凝完成签到,获得积分10
11秒前
12秒前
12秒前
陈杨完成签到 ,获得积分10
12秒前
李明发布了新的文献求助10
13秒前
简单的早晨关注了科研通微信公众号
13秒前
13秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817454
求助须知:如何正确求助?哪些是违规求助? 3360792
关于积分的说明 10409392
捐赠科研通 3078887
什么是DOI,文献DOI怎么找? 1690844
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060