A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification

自举(财务) 分割 人工智能 计算机科学 雅卡索引 卷积神经网络 模式识别(心理学) 深度学习 图像分割 学习迁移 数学 计量经济学
作者
Yutong Xie,Jianpeng Zhang,Yong Xia,Chunhua Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2482-2493 被引量:313
标识
DOI:10.1109/tmi.2020.2972964
摘要

Automated skin lesion segmentation and classification are two most essential and related tasks in the computer-aided diagnosis of skin cancer. Despite their prevalence, deep learning models are usually designed for only one task, ignoring the potential benefits in jointly performing both tasks. In this paper, we propose the mutual bootstrapping deep convolutional neural networks (MB-DCNN) model for simultaneous skin lesion segmentation and classification. This model consists of a coarse segmentation network (coarse-SN), a mask-guided classification network (mask-CN), and an enhanced segmentation network (enhanced-SN). On one hand, the coarse-SN generates coarse lesion masks that provide a prior bootstrapping for mask-CN to help it locate and classify skin lesions accurately. On the other hand, the lesion localization maps produced by mask-CN are then fed into enhanced-SN, aiming to transfer the localization information learned by mask-CN to enhanced-SN for accurate lesion segmentation. In this way, both segmentation and classification networks mutually transfer knowledge between each other and facilitate each other in a bootstrapping way. Meanwhile, we also design a novel rank loss and jointly use it with the Dice loss in segmentation networks to address the issues caused by class imbalance and hard-easy pixel imbalance. We evaluate the proposed MB-DCNN model on the ISIC-2017 and PH2 datasets, and achieve a Jaccard index of 80.4% and 89.4% in skin lesion segmentation and an average AUC of 93.8% and 97.7% in skin lesion classification, which are superior to the performance of representative state-of-the-art skin lesion segmentation and classification methods. Our results suggest that it is possible to boost the performance of skin lesion segmentation and classification simultaneously via training a unified model to perform both tasks in a mutual bootstrapping way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xqq完成签到,获得积分10
刚刚
斯文败类应助wangwan采纳,获得10
1秒前
候月完成签到,获得积分10
1秒前
1秒前
3秒前
康康发布了新的文献求助10
4秒前
5秒前
5秒前
汉堡包应助傻傻的夜柳采纳,获得100
7秒前
8秒前
ycy发布了新的文献求助10
8秒前
追寻宛海发布了新的文献求助15
9秒前
qaa2274278941发布了新的文献求助10
9秒前
8R60d8应助Echopotter采纳,获得10
10秒前
茉莉是个饱饱完成签到,获得积分10
11秒前
Jasper应助xiaodong采纳,获得10
14秒前
康康完成签到,获得积分10
16秒前
晨曦应助风风采纳,获得10
16秒前
18秒前
18秒前
18秒前
20秒前
lalalapa666发布了新的文献求助10
21秒前
yxlsunny完成签到,获得积分10
22秒前
罗晓倩发布了新的文献求助10
22秒前
23秒前
深情安青应助冷艳的纸鹤采纳,获得10
23秒前
等等发布了新的文献求助10
24秒前
28秒前
余羿叶完成签到,获得积分10
28秒前
我是老大应助qaa2274278941采纳,获得10
29秒前
rcrc111完成签到 ,获得积分10
29秒前
原始人完成签到,获得积分10
31秒前
32秒前
黎乐荷发布了新的文献求助10
33秒前
33秒前
阔阔kkkk应助ok采纳,获得10
33秒前
科研通AI2S应助ok采纳,获得10
33秒前
rrjl完成签到,获得积分10
33秒前
天空之城发布了新的文献求助10
34秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065404
求助须知:如何正确求助?哪些是违规求助? 3603923
关于积分的说明 11446224
捐赠科研通 3326502
什么是DOI,文献DOI怎么找? 1828770
邀请新用户注册赠送积分活动 898924
科研通“疑难数据库(出版商)”最低求助积分说明 819394