Moving-Distance-Minimized PSO for Mobile Robot Swarm

粒子群优化 群体行为 机器人 群机器人 多群优化 计算机科学 移动机器人 水准点(测量) 数学优化 蚂蚁机器人学 人工智能 数学 算法 机器人控制 地理 大地测量学
作者
Junqi Zhang,Yehao Lu,Lei Che,MengChu Zhou
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (9): 9871-9881 被引量:34
标识
DOI:10.1109/tcyb.2021.3079346
摘要

Particle swarm optimizer (PSO) and mobile robot swarm are two typical swarm techniques. Many applications emerge separately along both of them while the similarity between them is rarely considered. When a solution space is a certain region in reality, a robot swarm can replace a particle swarm to explore the optimal solution by performing PSO. In this way, a mobile robot swarm should be able to efficiently explore an area just like the particle swarm and uninterruptedly work even under the shortage of robots or in the case of unexpected failure of robots. Furthermore, the moving distances of robots are highly constrained because energy and time can be costly. Inspired by such requirements, this article proposes a moving-distance-minimized PSO (MPSO) for a mobile robot swarm to minimize the total moving distance of its robots while performing optimization. The distances between the current robot positions and the particle ones in the next generation are utilized to derive paths for robots such that the total distance that robots move is minimized, hence minimizing the energy and time for a robot swarm to locate the optima. Experiments on 28 CEC2013 benchmark functions show the advantage of the proposed method over the standard PSO. By adopting the given algorithm, the moving distance can be reduced by more than 66% and the makespan can be reduced by nearly 70% while offering the same optimization effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wk完成签到,获得积分20
1秒前
余味应助未雨绸缪采纳,获得10
1秒前
2秒前
doctor fighting完成签到,获得积分10
2秒前
张航关注了科研通微信公众号
2秒前
2秒前
万能图书馆应助王女士采纳,获得10
2秒前
dede完成签到,获得积分20
2秒前
3秒前
哎呀发布了新的文献求助20
3秒前
星辰大海应助儒雅的如松采纳,获得10
3秒前
charolte发布了新的文献求助10
4秒前
北海应助HappyBoy采纳,获得10
5秒前
知许解夏发布了新的文献求助10
5秒前
朵拉发布了新的文献求助10
6秒前
充电宝应助Una采纳,获得10
6秒前
嘟嘟嘟发布了新的文献求助10
6秒前
开心的小熊完成签到,获得积分10
6秒前
xiaoming1123完成签到,获得积分10
7秒前
cn完成签到 ,获得积分10
7秒前
7秒前
yxy发布了新的文献求助10
8秒前
8秒前
大模型应助贾舒涵采纳,获得10
8秒前
kangkang发布了新的文献求助10
8秒前
赵赵赵发布了新的文献求助10
9秒前
单纯飞莲发布了新的文献求助10
9秒前
丸橙发布了新的文献求助10
9秒前
科研通AI2S应助王振强采纳,获得10
9秒前
科研通AI2S应助王振强采纳,获得10
9秒前
檸橗槠完成签到,获得积分10
9秒前
10秒前
10秒前
Jasper应助cuigao采纳,获得10
11秒前
雪白巨人发布了新的文献求助10
11秒前
11秒前
卡卡西应助背后的梦凡采纳,获得10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793922
求助须知:如何正确求助?哪些是违规求助? 3338827
关于积分的说明 10292198
捐赠科研通 3055306
什么是DOI,文献DOI怎么找? 1676547
邀请新用户注册赠送积分活动 804557
科研通“疑难数据库(出版商)”最低求助积分说明 761950