Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways

电解质 材料科学 纳米晶材料 锂(药物) 化学工程 离子电导率 快离子导体 聚合物 陶瓷 复合数 电池(电) 电化学 纳米技术 电极 复合材料 化学 医学 功率(物理) 物理 物理化学 量子力学 工程类 内分泌学
作者
Ying Wang,Curt J. Zanelotti,Xiaoen Wang,Robert Kerr,Liyu Jin,Wang Hay Kan,Theo J. Dingemans,Maria Forsyth,Louis A. Madsen
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:20 (9): 1255-1263 被引量:190
标识
DOI:10.1038/s41563-021-00995-4
摘要

A critical challenge for next-generation lithium-based batteries lies in development of electrolytes that enable thermal safety along with the use of high-energy-density electrodes. We describe molecular ionic composite electrolytes based on an aligned liquid crystalline polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and non-flammable solid electrolyte possesses outstanding Li+ conductivity (1 mS cm−1 at 25 °C) and electrochemical stability (5.6 V versus Li|Li+) while suppressing dendrite growth and exhibiting low interfacial resistance (32 Ω cm2) and overpotentials (≤120 mV at 1 mA cm−2) during Li symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer–ion assembly to incorporate an inter-grain network filled with defective LiFSI and LiBF4 nanocrystals, strongly enhancing Li+ conduction. This modular material fabrication platform shows promise for safe and high-energy-density energy storage and conversion applications, incorporating the fast transport of ceramic-like conductors with the superior flexibility of polymer electrolytes. Developing safe electrolytes compatible with high-energy-density electrodes is key for the next generation of lithium-based batteries. Stable solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways are now proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Malmever发布了新的文献求助10
3秒前
1111发布了新的文献求助10
4秒前
三水发布了新的文献求助10
5秒前
6秒前
涨知识完成签到 ,获得积分10
7秒前
gomm完成签到,获得积分10
7秒前
FashionBoy应助aha采纳,获得10
10秒前
14秒前
14秒前
18秒前
aha发布了新的文献求助10
19秒前
zaqqq发布了新的文献求助10
19秒前
xzy998应助827584450采纳,获得10
23秒前
25秒前
zhw驳回了华仔应助
25秒前
25秒前
27秒前
无情吐司发布了新的文献求助10
32秒前
随遇而安应助殷超采纳,获得10
33秒前
jenningseastera应助漂亮幻莲采纳,获得10
33秒前
34秒前
赘婿应助yymm采纳,获得10
36秒前
AaronDP完成签到,获得积分10
36秒前
只鱼完成签到 ,获得积分10
37秒前
在水一方应助Rheton采纳,获得10
37秒前
xmy完成签到,获得积分10
39秒前
40秒前
40秒前
41秒前
aha完成签到,获得积分10
41秒前
45秒前
50秒前
51秒前
xrrrr完成签到,获得积分10
56秒前
CodeCraft应助忧心的棉花糖采纳,获得10
56秒前
CodeCraft应助wangli采纳,获得10
58秒前
所所应助科研通管家采纳,获得10
59秒前
小二郎应助科研通管家采纳,获得10
59秒前
非而者厚应助科研通管家采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649