组学
系统生物学
代谢组学
蛋白质组学
计算生物学
蛋白质稳态
表观遗传学
疾病
生物
脂类学
基因组学
精密医学
神经科学
生物信息学
医学
病理
DNA甲基化
遗传学
基因
基因组
基因表达
作者
Harald Hampel,Robert Nisticò,Nicholas T. Seyfried,Allan I. Levey,Erica Modeste,Pablo Lemercier,Filippo Baldacci,Nicola Toschi,Francesco Garaci,George Perry,Enzo Emanuele,Pedro L. Valenzuela,Alejandro Lucía,Andrea Urbani,Giulia Maria Sancesario,Mark Mapstone,Massimo Corbo,Andrea Vergallo,Simone Lista
标识
DOI:10.1016/j.arr.2021.101346
摘要
Alzheimer’s disease (AD) is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in biological alterations and disease spatial-temporal progression. Human in-vivo and post-mortem studies point out a failure of multi-level biological networks underlying AD pathophysiology, including proteostasis (amyloid-β and tau), synaptic homeostasis, inflammatory and immune responses, lipid and energy metabolism, oxidative stress. Therefore, a holistic, systems-level approach is needed to fully capture AD multi-faceted pathophysiology. Omics sciences – genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics – embedded in the systems biology (SB) theoretical and computational framework can generate explainable readouts describing the entire biological continuum of a disease. Such path in Neurology is encouraged by the promising results of omics sciences and SB approaches in Oncology, where stage-driven pathway-based therapies have been developed in line with the precision medicine paradigm. Multi-omics data integrated in SB network approaches will help detect and chart AD upstream pathomechanistic alterations and downstream molecular effects occurring in preclinical stages. Finally, integrating omics and neuroimaging data – i.e., neuroimaging-omics – will identify multi-dimensional biological signatures essential to track the clinical-biological trajectories, at the subpopulation or even individual level.
科研通智能强力驱动
Strongly Powered by AbleSci AI