Multi actor hierarchical attention critic with RNN-based feature extraction

计算机科学 人工智能 可扩展性 注意力网络 编码 动作(物理) 序列(生物学) 过程(计算) 特征(语言学) 人工神经网络 任务(项目管理) 强化学习 机器学习 代表(政治) 操作系统 基因 经济 法学 政治学 生物 政治 数据库 量子力学 哲学 管理 语言学 遗传学 物理 化学 生物化学
作者
Dianxi Shi,Chenran Zhao,Yajie Wang,Huanhuan Yang,Gongju Wang,Hao Jiang,Chao Xue,Shaowu Yang,Yongjun Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:471: 79-93 被引量:9
标识
DOI:10.1016/j.neucom.2021.10.093
摘要

Abstract Deep reinforcement learning has made significant progress in multi-agent tasks in recent years. However, most previous studies focus on solving fully cooperative tasks, which do not perform well in mixed tasks. In mixed tasks, the agent needs to comprehensively consider the information provided by its friends and enemies to learn its strategy, and its strategy is sensitive to the received information. Additionally, the input space of the critic network increases rapidly with the number of agents in the actor-critic framework. It’s of great necessity to efficiently learn information representation to obtain important features. To this end, we present an approach that conducts information representation with attention mechanism. Our approach adopts the framework of centralized training and decentralized execution. We apply the multi-head hierarchical attention mechanism to centrally computed critics, so critics can process the received information more accurately and assist actors in choosing better actions. The hierarchical attention critic adopts a bi-level attention structure which is composed of the agent-level and the group-level. They are designed to assign different weights to friends’ and enemies’ information and then summarize them at each timestep. It achieves high efficiency and scalability in mixed tasks. Furthermore, we use the feature extraction based on the recurrent neural network to encode the state-action sequence information of each agent. Experimental results show that our approach is not only applicable to cooperative environments but also better in mixed environments, especially in the predator-prey task, the reward obtained by our method is twice that of the baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鑫搭发布了新的文献求助20
2秒前
诚心谷南发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
可达鸭完成签到,获得积分10
5秒前
MiYou完成签到,获得积分10
5秒前
6秒前
科研通AI5应助在皖美羊羊采纳,获得10
6秒前
科研通AI5应助里里要努力采纳,获得10
6秒前
无花果应助happyness采纳,获得10
6秒前
知来者之可追完成签到,获得积分10
6秒前
香蕉觅云应助梓歆采纳,获得10
7秒前
8秒前
Ava应助Ling采纳,获得10
8秒前
冷静幻悲发布了新的文献求助10
8秒前
隐形曼青应助韩麒嘉采纳,获得10
8秒前
8秒前
下雨天发布了新的文献求助10
9秒前
柔弱烨霖发布了新的文献求助10
10秒前
华仔应助xili采纳,获得10
10秒前
飞飞发布了新的文献求助10
10秒前
FashionBoy应助shhyyds采纳,获得10
11秒前
牛马完成签到 ,获得积分10
12秒前
小蘑菇应助我的纸飞机采纳,获得10
12秒前
Owen应助要减肥的莛采纳,获得10
12秒前
开放晓博发布了新的文献求助10
13秒前
冰coke完成签到,获得积分10
13秒前
13秒前
yyy发布了新的文献求助10
14秒前
风中叶子完成签到,获得积分10
15秒前
豆包发布了新的文献求助10
17秒前
17秒前
下雨天完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
慕青应助认真的跳跳糖采纳,获得10
19秒前
烟花应助L_nan采纳,获得10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807394
求助须知:如何正确求助?哪些是违规求助? 3352185
关于积分的说明 10357743
捐赠科研通 3068204
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810014
科研通“疑难数据库(出版商)”最低求助积分说明 765853