Construction of a novel radiomics nomogram for the prediction of aggressive intrasegmental recurrence of HCC after radiofrequency ablation

列线图 医学 单变量 无线电技术 逻辑回归 磁共振成像 放射科 单变量分析 Lasso(编程语言) 射频消融术 多元分析 核医学 烧蚀 多元统计 肿瘤科 内科学 统计 万维网 计算机科学 数学
作者
Xiuling Lv,Minjiang Chen,Chunli Kong,Gaofeng Shu,Miaomiao Meng,Weichuan Ye,Shimiao Cheng,Liyun Zheng,Shiji Fang,Chunmiao Chen,Fazong Wu,Qiaoyou Weng,Jianfei Tu,Zhongwei Zhao,Jiansong Ji
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:144: 109955-109955 被引量:13
标识
DOI:10.1016/j.ejrad.2021.109955
摘要

To construct a precise prediction model of preoperative magnetic resonance imaging (MRI)-based nomogram for aggressive intrasegmental recurrence (AIR) of hepatocellular carcinoma (HCC) patients treated with radiofrequency ablation (RFA).Among 891 patients with HCC treated by RFA, 22 patients with AIR and 36 patients without AIR (non-AIR) were finally enrolled in our study, and each patient was followed up for more than 6 months to determine the occurrence of AIR. The laboratory indicators and MRI features were compared and assessed. Preoperative contrast-enhanced T1-weighted images (CE-T1WI) were used for radiomics analysis. The selected clinical indicators and texture features were finally screened out to generate the novel prediction nomogram.Tumor shape, ADC Value, DWI signal intensity and ΔSI were selected as the independent factors of AIR by univariate and multivariate logistic regression analysis. Meanwhile, two radiomics features were selected from 396 candidate features by LASSO (P < 0.05), which were further used to calculate the Rad-score. The selected clinical factors were further integrated with the Rad-score to construct the predictive model, and the AUCs were 0.941 (95% CI: 0.876-1.000) and 0.818 (95% CI: 0.576-1.000) in the training (15 AIR and 25 non-AIR) and validation cohorts (7 AIR and 11 non-AIR), respectively. The AIR predictive model was further converted into a novel radiomics nomogram, and decision curve analysis showed good agreement.The predictive nomogram integrated with clinical factors and CE-T1WI -based radiomics signature could accurately predict the occurrence of AIR after RFA, which could greatly help individualized evaluation before treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性凤凰发布了新的文献求助30
刚刚
小晚发布了新的文献求助30
刚刚
刚刚
刚刚
郭大侠发布了新的文献求助10
1秒前
石榴汁的书完成签到,获得积分10
1秒前
hui完成签到,获得积分20
2秒前
MXX关闭了MXX文献求助
3秒前
3秒前
sakki发布了新的文献求助10
4秒前
隐形曼青应助bora采纳,获得10
5秒前
5秒前
comic发布了新的文献求助10
6秒前
hui发布了新的文献求助10
7秒前
Jasper应助任性凤凰采纳,获得10
8秒前
林布林完成签到,获得积分10
8秒前
vivien关注了科研通微信公众号
9秒前
冰魂应助KYT_Hu采纳,获得10
9秒前
jianwenhao完成签到,获得积分10
9秒前
身处人海完成签到,获得积分10
9秒前
啊盘发布了新的文献求助10
10秒前
拾一完成签到,获得积分10
10秒前
11秒前
念初完成签到 ,获得积分10
12秒前
传奇3应助学术小垃圾采纳,获得10
12秒前
13秒前
14秒前
老实奇迹发布了新的文献求助10
14秒前
bora发布了新的文献求助10
16秒前
赫连山菡完成签到,获得积分10
16秒前
古月完成签到,获得积分10
16秒前
七熵完成签到 ,获得积分10
18秒前
Haterain发布了新的文献求助10
18秒前
英俊丹寒完成签到,获得积分10
18秒前
科研通AI5应助啊盘采纳,获得10
20秒前
科研力力发布了新的文献求助10
21秒前
21秒前
烟花应助科研小垃圾采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得30
22秒前
Ava应助科研通管家采纳,获得10
22秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826191
求助须知:如何正确求助?哪些是违规求助? 3368614
关于积分的说明 10451355
捐赠科研通 3087956
什么是DOI,文献DOI怎么找? 1698907
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065