Quantifying Sex Differences in Behavior in the Era of “Big” Data

多样性(政治) 生物 行为模式 功能(生物学) 适应性行为 认知心理学 性行为 人工智能 心理学 发展心理学 计算机科学 进化生物学 人类学 软件工程 社会学
作者
Brian C. Trainor,Annegret L. Falkner
出处
期刊:Cold Spring Harbor Perspectives in Biology [Cold Spring Harbor Laboratory]
卷期号:14 (5): a039164-a039164 被引量:4
标识
DOI:10.1101/cshperspect.a039164
摘要

Sex differences are commonly observed in behaviors that are closely linked to adaptive function, but sex differences can also be observed in behavioral "building blocks" such as locomotor activity and reward processing. Modern neuroscientific inquiry, in pursuit of generalizable principles of functioning across sexes, has often ignored these more subtle sex differences in behavioral building blocks that may result from differences in these behavioral building blocks. A frequent assumption is that there is a default (often male) way to perform a behavior. This approach misses fundamental drivers of individual variability within and between sexes. Incomplete behavioral descriptions of both sexes can lead to an overreliance on reduced "single-variable" readouts of complex behaviors, the design of which may be based on male-biased samples. Here, we advocate that the incorporation of new machine-learning tools for collecting and analyzing multimodal "big behavior" data allows for a more holistic and richer approach to the quantification of behavior in both sexes. These new tools make behavioral description more robust and replicable across laboratories and species, and may open up new lines of neuroscientific inquiry by facilitating the discovery of novel behavioral states. Having more accurate measures of behavioral diversity in males and females could serve as a hypothesis generator for where and when we should look in the brain for meaningful neural differences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助VESong采纳,获得10
刚刚
桐桐应助激情的不弱采纳,获得10
刚刚
2秒前
土豪的龙猫应助大树采纳,获得10
2秒前
茉莉花发布了新的文献求助10
3秒前
英俊的铭应助shishuang采纳,获得10
4秒前
123发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
老艺人完成签到,获得积分10
7秒前
nnmmuu完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
时生发布了新的文献求助10
13秒前
登登完成签到,获得积分10
13秒前
是达达哦完成签到,获得积分10
13秒前
Youzi完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
打打应助VESong采纳,获得10
16秒前
17秒前
幸福妙柏发布了新的文献求助10
17秒前
xiying完成签到 ,获得积分10
18秒前
科研通AI6.1应助茉莉花采纳,获得10
20秒前
cy发布了新的文献求助20
21秒前
qweqwe完成签到,获得积分10
21秒前
23秒前
wanci应助123采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
lyx完成签到,获得积分10
24秒前
小二郎应助东东采纳,获得10
25秒前
清秀的怀蕊完成签到 ,获得积分0
26秒前
RE发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785553
求助须知:如何正确求助?哪些是违规求助? 5688705
关于积分的说明 15467891
捐赠科研通 4914643
什么是DOI,文献DOI怎么找? 2645317
邀请新用户注册赠送积分活动 1593098
关于科研通互助平台的介绍 1547432