A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning

医学 体内 多中心研究 机器学习 泌尿系统 内科学 计算机科学 泌尿科 医学物理学 人工智能 病理 生物 生物技术 随机对照试验
作者
Junjiong Zheng,Hao Yu,Jesur Batur,Zhenfeng Shi,Aierken Tuerxun,Abudukeyoumu Abulajiang,Sihong Lu,Jianqiu Kong,Lifang Huang,Shaoxu Wu,Zhuo Wu,Ya Qiu,Tianxin Lin,Xiaoguang Zou
出处
期刊:Kidney International [Elsevier BV]
卷期号:100 (4): 870-880 被引量:50
标识
DOI:10.1016/j.kint.2021.05.031
摘要

Urolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Stone composition was determined by Fourier transform infrared spectroscopy. A total of 1316 radiomic features were extracted from the pre-treatment Computer Tomography images of each patient. Using the least absolute shrinkage and selection operator algorithm, we identified a radiomic signature that achieved favorable discrimination in the training set, which was confirmed in the validation sets. Moreover, we then developed a radiomic model incorporating the radiomic signature, urease-producing bacteria in urine, and urine pH based on multivariate logistic regression analysis. The nomogram showed favorable calibration and discrimination in the training and three validation sets (area under the curve [95% confidence interval], 0.898 [0.840-0.956], 0.832 [0.742-0.923], 0.825 [0.783-0.866], and 0.812 [0.710-0.914], respectively). Decision curve analysis demonstrated the clinical utility of the radiomic model. Thus, our proposed radiomic model can serve as a non-invasive tool to identify urinary infection stones in vivo, which may optimize disease management in urolithiasis and improve patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tao关闭了Tao文献求助
刚刚
cyndi发布了新的文献求助10
1秒前
稳重十三发布了新的文献求助20
1秒前
赘婿应助小茗同学采纳,获得10
2秒前
科研通AI5应助guobiao采纳,获得10
3秒前
脑洞疼应助lll采纳,获得10
3秒前
科研通AI2S应助朴实的一兰采纳,获得10
3秒前
4秒前
小西贝完成签到 ,获得积分10
5秒前
5秒前
酷波er应助笑点低的鸿采纳,获得10
7秒前
che完成签到,获得积分10
8秒前
行7发布了新的文献求助10
8秒前
司空元正发布了新的文献求助10
8秒前
很酷的妞子完成签到 ,获得积分10
9秒前
学术屎壳郎完成签到,获得积分10
9秒前
今后应助暖冬的向日葵采纳,获得10
10秒前
10秒前
山姆弟弟完成签到,获得积分10
11秒前
HZC发布了新的文献求助10
11秒前
12秒前
小王发布了新的文献求助10
15秒前
15秒前
张平一完成签到 ,获得积分10
16秒前
cloudy发布了新的文献求助10
17秒前
长命百岁完成签到 ,获得积分10
18秒前
啦啦啦完成签到,获得积分10
19秒前
21秒前
jinzhen发布了新的文献求助10
21秒前
22秒前
lan发布了新的文献求助10
24秒前
24秒前
天真的不尤完成签到 ,获得积分10
25秒前
27秒前
家妙彤发布了新的文献求助10
28秒前
Beginner完成签到,获得积分10
28秒前
FashionBoy应助高会和采纳,获得10
29秒前
HZC完成签到,获得积分20
29秒前
know发布了新的文献求助10
29秒前
cloudy完成签到,获得积分20
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787261
求助须知:如何正确求助?哪些是违规求助? 3332885
关于积分的说明 10257979
捐赠科研通 3048284
什么是DOI,文献DOI怎么找? 1673053
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760287