Enhanced DC breakdown strength of epoxy nanocomposites at elevated temperature and its mechanisms

环氧树脂 材料科学 复合材料 纳米颗粒 体积分数 纳米复合材料 电介质 热膨胀 介电强度 纳米技术 光电子学
作者
Zhen Li,Daomin Min,Huan Niu,Shijun Li,Yuanyuan Zhang,Yin Huang,Shengtao Li
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:130 (6) 被引量:35
标识
DOI:10.1063/5.0057048
摘要

Breakdown of epoxy composites is easy to be triggered as the temperature is elevated. In order to improve the DC breakdown strength of epoxy composites at elevated temperature and explore the DC breakdown mechanism, functional nano-titania (TiO2) particles were incorporated into the epoxy matrix with different filler loadings, molecular chain dynamic characteristics were analyzed by dielectric relaxation spectrum analysis, free volumes of epoxy nanocomposites were evaluated by thermal expansion dilatometer, and DC breakdown strengths of samples were tested at 413 K. Results indicate that DC breakdown strength first increases and then decreases with nanoparticle filler loadings, and a 10.89% improvement of DC breakdown strength is found compared to pristine epoxy resin. The breakdown strength of epoxy resin at elevated temperature is determined by the expansion properties of free volume in the interfacial region between the epoxy matrix and nanoparticles. When incorporating a small amount of nanoparticles, free volume is difficult to expand due to the strong interactions between molecular chains and nanoparticles, the fraction of free volume decreases, and long molecular chains of epoxy are hard to move, and thus DC breakdown strength increases. While further adding nanoparticles, interfacial regions of nanoparticles overlap and free volumes are likely to expand by thermal stimulation in the overlap region, which accelerate molecular chain dynamics and improve free volume fraction, and DC breakdown strength increases. It can be found that DC breakdown strength at an elevated temperature can be enhanced by tailoring free volume through incorporating proper content of functional nanoparticles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shine发布了新的文献求助10
1秒前
SIA_TERS发布了新的文献求助10
2秒前
光亮的秋白完成签到 ,获得积分10
3秒前
共享精神应助丰富的墨镜采纳,获得10
3秒前
4秒前
5秒前
6秒前
科研通AI2S应助net80yhm采纳,获得10
8秒前
牛马鹅发布了新的文献求助10
9秒前
琳666完成签到,获得积分10
9秒前
科研dog完成签到,获得积分10
10秒前
杨裕农发布了新的文献求助10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
一壶古酒应助科研通管家采纳,获得100
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
HANGOVERG应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得30
13秒前
烤冷面应助科研通管家采纳,获得10
13秒前
HANGOVERG应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
ho应助科研通管家采纳,获得10
13秒前
13秒前
zmy发布了新的文献求助10
13秒前
13秒前
Akim应助科研通管家采纳,获得10
14秒前
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
木子木木夕完成签到 ,获得积分10
14秒前
17秒前
汉堡包应助材料生采纳,获得10
17秒前
17秒前
AL发布了新的文献求助10
19秒前
WYH发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164