OSSR-PID: One-Shot Symbol Recognition in P&ID Sheets using Path Sampling and GCN

计算机科学 人工智能 符号(正式) 模式识别(心理学) 图形 管道(软件) 判别式 理论计算机科学 程序设计语言
作者
Shubham Paliwal,Monika Sharma,Lovekesh Vig
摘要

Piping and Instrumentation Diagrams (P&ID) are ubiquitous in several manufacturing, oil and gas enterprises for representing engineering schematics and equipment layout. There is an urgent need to extract and digitize information from P&IDs without the cost of annotating a varying set of symbols for each new use case. A robust one-shot learning approach for symbol recognition i.e., localization followed by classification, would therefore go a long way towards this goal. Our method works by sampling pixels sequentially along the different contour boundaries in the image. These sampled points form paths which are used in the prototypical line diagram to construct a graph that captures the structure of the contours. Subsequently, the prototypical graphs are fed into a Dynamic Graph Convolutional Neural Network (DGCNN) which is trained to classify graphs into one of the given symbol classes. Further, we append embeddings from a Resnet-34 network which is trained on symbol images containing sampled points to make the classification network more robust. Since, many symbols in P&ID are structurally very similar to each other, we utilize Arcface loss during DGCNN training which helps in maximizing symbol class separability by producing highly discriminative embeddings. The images consist of components attached on the pipeline (straight line). The sampled points segregated around the symbol regions are used for the classification task. The proposed pipeline, named OSSR-PID, is fast and gives outstanding performance for recognition of symbols on a synthetic dataset of 100 P&ID diagrams. We also compare our method against prior-work on a real-world private dataset of 12 P&ID sheets and obtain comparable/superior results. Remarkably, it is able to achieve such excellent performance using only one prototypical example per symbol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尧尧发布了新的文献求助10
1秒前
风中的彤发布了新的文献求助10
1秒前
2秒前
充电宝应助孤独的以菱采纳,获得10
2秒前
3秒前
毛豆妈妈发布了新的文献求助10
3秒前
王可爱发布了新的文献求助10
3秒前
火星上荧荧完成签到,获得积分10
3秒前
3秒前
ding应助嗯嗯采纳,获得10
4秒前
4秒前
4秒前
天晴肖完成签到,获得积分10
5秒前
1111发布了新的文献求助10
5秒前
Birch完成签到,获得积分10
5秒前
Ecoman发布了新的文献求助30
5秒前
zz完成签到,获得积分10
6秒前
6秒前
科研通AI6应助飞222采纳,获得10
6秒前
aaa发布了新的文献求助10
6秒前
科研通AI6应助zdesfsfa采纳,获得10
7秒前
复杂冰淇淋完成签到,获得积分20
7秒前
积极的沛文完成签到,获得积分10
7秒前
7秒前
songkoro发布了新的文献求助10
7秒前
7秒前
8秒前
qwer发布了新的文献求助10
8秒前
文刀完成签到,获得积分10
8秒前
科目三应助oui采纳,获得10
8秒前
岳先森完成签到,获得积分10
8秒前
郭通发布了新的文献求助10
8秒前
8秒前
9秒前
田様应助蛋蛋采纳,获得10
9秒前
昵称完成签到,获得积分10
10秒前
迅速的诗兰完成签到,获得积分20
10秒前
zhangfuchao完成签到,获得积分10
11秒前
浮游应助Ovo采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013783
求助须知:如何正确求助?哪些是违规求助? 4254841
关于积分的说明 13259428
捐赠科研通 4058033
什么是DOI,文献DOI怎么找? 2219493
邀请新用户注册赠送积分活动 1228981
关于科研通互助平台的介绍 1151575