已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI

医学 乳腺癌 磁共振成像 随机森林 肿瘤科 接收机工作特性 癌症 内科学 机器学习 病理 放射科 血管生成 计算机科学
作者
Ji Young Lee,Kwang‐Sig Lee,Bo Kyoung Seo,Kyu Ran Cho,Ok Hee Woo,Sung Eun Song,Eun‐Kyung Kim,Hye Yoon Lee,Jung Sun Kim,Jaehyung Cha
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (1): 650-660 被引量:114
标识
DOI:10.1007/s00330-021-08146-8
摘要

To investigate machine learning approaches for radiomics-based prediction of prognostic biomarkers and molecular subtypes of breast cancer using quantification of tumor heterogeneity and angiogenesis properties on magnetic resonance imaging (MRI).This prospective study examined 291 invasive cancers in 288 patients who underwent breast MRI at 3 T before treatment between May 2017 and July 2019. Texture and perfusion analyses were performed and a total of 160 parameters for each cancer were extracted. Relationships between MRI parameters and prognostic biomarkers were analyzed using five machine learning algorithms. Each model was built using only texture features, only perfusion features, or both. Model performance was compared using the area under the receiver-operating characteristic curve (AUC) and the DeLong method, and the importance of MRI parameters in prediction was derived.Texture parameters were associated with the status of hormone receptors, human epidermal growth factor receptor 2, and Ki67, tumor size, grade, and molecular subtypes (p < 0.002). Perfusion parameters were associated with the status of hormone receptors and Ki67, grade, and molecular subtypes (p < 0.003). The random forest model integrating texture and perfusion parameters showed the highest performance (AUC = 0.75). The performance of the random forest model was the best with a special scale filter of 0 (AUC = 0.80). The important parameters for prediction were texture irregularity (entropy) and relative extracellular extravascular space (Ve).Radiomic machine learning that integrates tumor heterogeneity and angiogenesis properties on MRI has the potential to noninvasively predict prognostic factors of breast cancer.• Machine learning, integrating tumor heterogeneity and angiogenesis properties on MRI, can be applied to predict prognostic biomarkers and molecular subtypes in breast cancer. • The random forest model showed the best predictive performance among the five machine learning models (logistic regression, decision tree, naïve Bayes, random forest, and artificial neural network). • The most important MRI parameters for predicting prognostic factors in breast cancer were texture irregularity (entropy) among texture parameters and relative extracellular extravascular space (Ve) among perfusion parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL完成签到 ,获得积分10
1秒前
翁雁丝发布了新的文献求助10
1秒前
2秒前
Della完成签到 ,获得积分10
2秒前
尾状叶完成签到 ,获得积分10
3秒前
爱听歌的悒完成签到 ,获得积分10
4秒前
标致一手发布了新的文献求助30
8秒前
9秒前
瘦瘦凌丝完成签到 ,获得积分10
9秒前
10秒前
baba完成签到,获得积分10
10秒前
11秒前
无聊的诗珊完成签到,获得积分10
12秒前
科研通AI6应助木木采纳,获得10
13秒前
13秒前
13秒前
Yc发布了新的文献求助10
14秒前
14秒前
柚子发布了新的文献求助10
16秒前
111发布了新的文献求助10
18秒前
18秒前
18秒前
汉堡完成签到 ,获得积分10
19秒前
脑洞疼应助tangz采纳,获得10
22秒前
22秒前
田様应助baba采纳,获得10
23秒前
你好世界发布了新的文献求助10
23秒前
一个西藏完成签到 ,获得积分10
23秒前
矮小的月光关注了科研通微信公众号
24秒前
scwang完成签到,获得积分10
24秒前
思源应助南湖秋水采纳,获得10
25秒前
刘大夫发布了新的文献求助10
25秒前
25秒前
上官若男应助呵呵心情采纳,获得10
26秒前
26秒前
柚子完成签到,获得积分10
27秒前
豆沙包发布了新的文献求助10
27秒前
zq完成签到,获得积分10
27秒前
你好世界完成签到,获得积分10
29秒前
Ming Chen发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312541
求助须知:如何正确求助?哪些是违规求助? 4456162
关于积分的说明 13865860
捐赠科研通 4344710
什么是DOI,文献DOI怎么找? 2386047
邀请新用户注册赠送积分活动 1380345
关于科研通互助平台的介绍 1348747