自噬
肾
肾脏疾病
背景(考古学)
蛋白质水解
氧化应激
肾细胞癌
生物
医学
生物信息学
癌症研究
细胞生物学
内科学
内分泌学
生物化学
细胞凋亡
酶
古生物学
作者
Zhen Yuan,Shuyuan Wang,Xiaoyue Tan,Dekun Wang
出处
期刊:Cells
[Multidisciplinary Digital Publishing Institute]
日期:2022-01-25
卷期号:11 (3): 406-406
被引量:15
标识
DOI:10.3390/cells11030406
摘要
Chaperone-mediated autophagy (CMA) is a separate type of lysosomal proteolysis, characterized by its selectivity of substrate proteins and direct translocation into lysosomes. Recent studies have declared the involvement of CMA in a variety of physiologic and pathologic situations involving the kidney, and it has emerged as a potential target for the treatment of kidney diseases. The role of CMA in kidney diseases is context-dependent and appears reciprocally with macroautophagy. Among the renal resident cells, the proximal tubule exhibits a high basal level of CMA activity, and restoration of CMA alleviates the aging-related tubular alternations. The level of CMA is up-regulated under conditions of oxidative stress, such as in acute kidney injury, while it is declined in chronic kidney disease and aging-related kidney diseases, leading to the accumulation of oxidized substrates. Suppressed CMA leads to the kidney hypertrophy in diabetes mellitus, and the increase of CMA contributes to the progress and chemoresistance in renal cell carcinoma. With the progress on the understanding of the cellular functions and uncovering the clinical scenario, the application of targeting CMA in the treatment of kidney diseases is expected.
科研通智能强力驱动
Strongly Powered by AbleSci AI