家族性高胆固醇血症
桑格测序
工作流程
计算生物学
纳米孔测序
DNA测序
遗传学
PCSK9
低密度脂蛋白受体
基因检测
仆从
基因
生物
生物信息学
计算机科学
胆固醇
脂蛋白
数据库
生物化学
作者
Muhidien Soufi,Simon Bedenbender,Volker Ruppert,Bilgen Kurt,Bernhard Schieffer,Juergen R. Schaefer
标识
DOI:10.3389/fgene.2022.836231
摘要
Familial hypercholesterolemia (FH) is an autosomal dominant lipid metabolism disorder characterized by severely elevated plasma low-density lipoprotein cholesterol levels. The disease is caused by mutations in 3 genes ( LDLR , APOB and PCSK9 ) while over 90% of the mutations are located within the LDLR gene. Thus, genetic analysis of the LDLR gene is the first step in the genetic diagnosis of FH. However, conventional methods like Sanger and NextGen sequencing are still costly and time-consuming. In contrast, Oxford Nanopore technology sequencing is an emerging third-generation sequencing technology featured by easy operability, low cost, small size and the capability of parallel sample sequencing. Here, we present an easy Nanopore-sequencing-based workflow for the rapid genetic testing of FH taking only 3 days and costing less than $50 per sample without the requirement for deep bioinformatic knowledge. Using our workflow, we were able to identify the underlying pathogenic variants of 10 FH patients including one novel, not yet recorded pathogenic variants. Our workflow allows the rapid evaluation of the pathogenic variants by utilizing detailed variant information from Ensembl. Additionally, our workflow is not restricted to sequencing the LDLR gene alone but can be easily adapted to the other FH-causing genes and more importantly, to any desired gene contributing to any hereditary disease. Therefore, our workflow is an attractive opportunity for every diagnostic laboratory to offer fast and easy in-house genetic diagnostics.
科研通智能强力驱动
Strongly Powered by AbleSci AI