On the Explainability of Natural Language Processing Deep Models

计算机科学 可解释性 人工智能 领域(数学) 自然语言处理 机器翻译 深度学习 机器学习 词(群论) 语言模型 语言学 数学 哲学 纯数学
作者
Julia El Zini,Mariette Awad
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (5): 1-31 被引量:89
标识
DOI:10.1145/3529755
摘要

Despite their success, deep networks are used as black-box models with outputs that are not easily explainable during the learning and the prediction phases. This lack of interpretability is significantly limiting the adoption of such models in domains where decisions are critical such as the medical and legal fields. Recently, researchers have been interested in developing methods that help explain individual decisions and decipher the hidden representations of machine learning models in general and deep networks specifically. While there has been a recent explosion of work on Explainable Artificial Intelligence (ExAI) on deep models that operate on imagery and tabular data, textual datasets present new challenges to the ExAI community. Such challenges can be attributed to the lack of input structure in textual data, the use of word embeddings that add to the opacity of the models and the difficulty of the visualization of the inner workings of deep models when they are trained on textual data. Lately, methods have been developed to address the aforementioned challenges and present satisfactory explanations on Natural Language Processing (NLP) models. However, such methods are yet to be studied in a comprehensive framework where common challenges are properly stated and rigorous evaluation practices and metrics are proposed. Motivated to democratize ExAI methods in the NLP field, we present in this work a survey that studies model-agnostic as well as model-specific explainability methods on NLP models. Such methods can either develop inherently interpretable NLP models or operate on pre-trained models in a post hoc manner. We make this distinction and we further decompose the methods into three categories according to what they explain: (1) word embeddings (input level), (2) inner workings of NLP models (processing level), and (3) models’ decisions (output level). We also detail the different evaluation approaches interpretability methods in the NLP field. Finally, we present a case-study on the well-known neural machine translation in an appendix, and we propose promising future research directions for ExAI in the NLP field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助跳跃保温杯采纳,获得10
刚刚
1秒前
毛月月发布了新的文献求助10
1秒前
1秒前
称心初之完成签到,获得积分10
2秒前
2秒前
3秒前
zp19951015完成签到,获得积分10
3秒前
白白白发布了新的文献求助10
3秒前
3秒前
fangfang完成签到,获得积分10
3秒前
qhg发布了新的文献求助10
3秒前
那时花开应助研友_8yVV0L采纳,获得10
4秒前
烟花应助柴犬采纳,获得10
5秒前
在水一方发布了新的文献求助10
6秒前
浮游应助多情紫霜采纳,获得10
6秒前
6秒前
6秒前
7秒前
飞想思完成签到,获得积分10
7秒前
暴躁的鸽子完成签到,获得积分10
7秒前
燕知南发布了新的文献求助10
7秒前
KanmenRider发布了新的文献求助30
8秒前
aodilee应助娇气的幼南采纳,获得20
8秒前
zp19951015发布了新的文献求助10
8秒前
栢君苏mini完成签到,获得积分10
8秒前
9秒前
边走边听发布了新的文献求助10
10秒前
10秒前
大力的冥幽完成签到,获得积分20
10秒前
zch关注了科研通微信公众号
11秒前
KIRIN完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
星期八再说完成签到,获得积分10
12秒前
lyb发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318176
求助须知:如何正确求助?哪些是违规求助? 4460399
关于积分的说明 13878616
捐赠科研通 4350829
什么是DOI,文献DOI怎么找? 2389556
邀请新用户注册赠送积分活动 1383649
关于科研通互助平台的介绍 1353137