A Unified BRB-Based Framework for Real-Time Health Status Prediction in High-Speed Trains

火车 计算机科学 调度(生产过程) 预测建模 数据挖掘 机器学习 人工智能 实时计算 工程类 运营管理 地图学 地理
作者
Chao Cheng,Yuhong Guo,Jiuhe Wang,Hongtian Chen,Junjie Shao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (9): 9272-9282 被引量:10
标识
DOI:10.1109/tvt.2022.3179448
摘要

The health status of the running gear in high-speed trains changes dynamically with time in a complete life cycle. Running gear systems composed of many coupled components are complex, and health statuses of which are difficult to predict in real time through a traditional health status prediction scheme. Lately, belief rule base (BRB), which is able to combine quantitative information and expert knowledge, has shown excellent expression in modeling complex systems. In the procedure of health status prediction, expert expertise can sufficiently enhance the accuracy and efficiency of this model. Therefore, this paper puts forwards a real-time health status prediction framework based on a multi-layer BRB with priority scheduling strategies for running gears. In the first-layer BRB, a time-series prediction model of multiple module BRB considering complete features is established. In the second-layer model, grey relation analysis (GRA) is employed in priority scheduling strategies of features. The third-layer BRB is used for assessing the health status of running gears by combining the features. In addition, the initial parameters of all module BRB given by experts may not be precise. Accordingly, the initial parameters in the BRB are updated by the recursive algorithm online. Finally, the proposed method is tested on the testing platform in running gears. The results make it clear the proposed method can predict the health status of running gears with much accuracy in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留在树林里完成签到,获得积分10
刚刚
jin完成签到,获得积分10
2秒前
在水一方应助逗号采纳,获得10
2秒前
不想动的苹果完成签到,获得积分10
2秒前
lhx完成签到,获得积分10
3秒前
Zhang发布了新的文献求助10
3秒前
Joshua发布了新的文献求助10
3秒前
珈蓝发布了新的文献求助10
4秒前
4秒前
余额不足完成签到,获得积分10
6秒前
7秒前
10秒前
10秒前
10秒前
13秒前
科研通AI5应助博修采纳,获得10
14秒前
IBMffff发布了新的文献求助30
14秒前
星空发布了新的文献求助10
15秒前
张靖超发布了新的文献求助10
17秒前
18秒前
rrjl完成签到,获得积分10
19秒前
19秒前
Owen应助不想动的苹果采纳,获得10
20秒前
21秒前
21秒前
深情安青应助lishuang5采纳,获得10
21秒前
吴女士完成签到,获得积分10
22秒前
一一应助花生油炒花生米采纳,获得10
22秒前
星空完成签到,获得积分10
23秒前
眼睛大蹇发布了新的文献求助10
23秒前
科研通AI5应助zhanlang采纳,获得10
25秒前
Zhang发布了新的文献求助10
26秒前
26秒前
星辉斑斓完成签到,获得积分10
28秒前
喜马拉雅川完成签到,获得积分10
28秒前
28秒前
29秒前
ww完成签到,获得积分10
29秒前
8D发布了新的文献求助10
32秒前
Lucas应助眼睛大蹇采纳,获得10
32秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826150
求助须知:如何正确求助?哪些是违规求助? 3368568
关于积分的说明 10451125
捐赠科研通 3087956
什么是DOI,文献DOI怎么找? 1698889
邀请新用户注册赠送积分活动 817171
科研通“疑难数据库(出版商)”最低求助积分说明 770065