Discrimination of raw and sulfur-fumigated ginseng based on Fourier transform infrared spectroscopy coupled with chemometrics

人参 化学计量学 硫黄 傅里叶变换红外光谱 化学 熏蒸 偏最小二乘回归 红外光谱学 光谱学 分析化学(期刊) 生物系统 数学 色谱法 统计 有机化学 园艺 生物 医学 物理 替代医学 病理 量子力学
作者
Ping Li,Yanna Zhang,Yan Ding,Qi Wu,Zhaofang Liu,Penghui Zhao,Guojing Zhao,Shuhong Ye
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:181: 107767-107767 被引量:11
标识
DOI:10.1016/j.microc.2022.107767
摘要

Ginseng (Panax ginseng), as a tonic and functional food in many countries and regions for thousands of years, is often sulfur-fumigated (SF) for storage and protection. However, our previous study indicated sulfur-fumigation could transform ginsenosides, the active components of ginseng, into sulfur-containing derivatives and thus affect the quality and safety of ginseng. In this study, a rapid and efficient method in discrimination of non-fumigated (NF) and SF ginseng was developed using Fourier transform infrared (FT-IR) spectroscopy coupled with multivariate statistical analysis. A total of 240 batches of raw spectra were obtained from NF and SF ginseng by FT-IR spectroscopy. After excluding the outliers, the different performance of 3 spectral signal enhancing methods, 3 modeling evaluation methods, and 4 model evaluation indexes were compared. The results demonstrated the feasibility of using FT-IR spectroscopy between 3650 and 3200 cm−1 for the detection of sulfur-fumigation in ginseng. After sulfur fumigation, the peak areas in fingerprint and functional group area varied significantly. In addition, the parameters of back propagation artificial neural network (BP-ANN) evaluation model are the highest, its accuracy = 91.67%, precision = 89.29%, recall = 96.15%, and F1 = 92.59%. The error rates of 3 models were k-nearest neighbor algorithm (KNN) (25.00%) > logistic regression (LR) (16.67%) > BP-ANN (8.33%). It can be concluded that FT-IR spectroscopy combined with multivariate statistical analysis has great potential in rapid discrimination of NF and SF ginseng, which can provide a valuable reference for the quality and effectiveness of edible and medicinal application of ginseng.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zrs发布了新的文献求助10
2秒前
AYF完成签到,获得积分10
4秒前
闪闪完成签到,获得积分10
5秒前
秋子发布了新的文献求助10
6秒前
7秒前
寒舟饮完成签到,获得积分10
8秒前
孔绍君完成签到 ,获得积分10
8秒前
飘逸的易梦完成签到,获得积分10
9秒前
完美世界应助刀锋采纳,获得10
12秒前
12秒前
研友_LjDyNZ完成签到,获得积分10
13秒前
芽芽豆完成签到 ,获得积分10
14秒前
jackiewang发布了新的文献求助10
14秒前
14秒前
14秒前
CipherSage应助单眼皮女生采纳,获得10
15秒前
追风少年i发布了新的文献求助10
17秒前
Owen发布了新的文献求助10
17秒前
冷妹君完成签到,获得积分10
17秒前
尺八发布了新的文献求助10
18秒前
英姑应助zrs采纳,获得10
18秒前
Joey完成签到,获得积分10
20秒前
20秒前
霍师傅发布了新的文献求助10
20秒前
刀锋给刀锋的求助进行了留言
21秒前
传奇3应助清脆的雁易采纳,获得10
24秒前
24秒前
不倦应助尺八采纳,获得10
24秒前
JL完成签到,获得积分10
24秒前
Milo完成签到,获得积分10
26秒前
假装学霸完成签到 ,获得积分10
26秒前
26秒前
乐乐应助万类霜天竞自由采纳,获得10
26秒前
jackiewang完成签到,获得积分10
28秒前
bubu完成签到,获得积分10
30秒前
刘静完成签到,获得积分10
31秒前
科研通AI5应助wuniuniu采纳,获得10
31秒前
大模型应助专注的大炮采纳,获得10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339