Supervised Optimal Chemotherapy Regimen Based on Offline Reinforcement Learning

强化学习 养生 计算机科学 地铁列车时刻表 贝伐单抗 机器学习 人工智能 化疗 医学 医学物理学 外科 操作系统
作者
Chamani Shiranthika,Kuo-Wei Chen,Chung-Yih Wang,Chan‐Yun Yang,B. H. Sudantha,Wei-Fu Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (9): 4763-4772 被引量:16
标识
DOI:10.1109/jbhi.2022.3183854
摘要

In recent years, reinforcement learning (RL) has achieved a remarkable achievement and it has attracted researchers' attention in modeling real-life scenarios by expanding its research beyond conventional complex games. Prediction of optimal treatment regimens from observational real clinical data is being popularized, and more advanced versions of RL algorithms are being implemented in the literature. However, RL-generated medications still need careful supervision of expertise parties or doctors in healthcare. Hence, in this paper, a Supervised Optimal Chemotherapy Regimen (SOCR) approach to investigate optimal chemotherapy-dosing schedule for cancer patients was presented by using Offline Reinforcement Learning. The optimal policy suggested by the RL approach was supervised by incorporating previous treatment decisions of oncologists, which could add clinical expertise knowledge on algorithmic results. Presented SOCR approach followed a model-based architecture using conservative Q-Learning (CQL) algorithm. The developed model was tested using a manually constructed database of forty Stage-IV colon cancer patients, receiving line-1 chemotherapy treatments, who were clinically classified as 'Bevacizumab based patient' and 'Cetuximab based patient'. Experimental results revealed that the supervision from the oncologists has considered the effect to stabilize chemotherapy regimen and it was suggested that the proposed framework could be successfully used as a supportive model for oncologists in deciding their treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田静然发布了新的文献求助10
1秒前
行者发布了新的文献求助10
2秒前
jhbdhs发布了新的文献求助10
3秒前
Glorious发布了新的文献求助10
3秒前
Hear发布了新的文献求助10
3秒前
阳光的夏槐完成签到,获得积分10
3秒前
4秒前
咻咻发布了新的文献求助10
4秒前
文献来来来完成签到,获得积分10
5秒前
5秒前
小魏发布了新的文献求助10
6秒前
7秒前
CipherSage应助Sky我的小清新采纳,获得30
7秒前
Hello应助1234采纳,获得10
7秒前
7秒前
是个小朋友啊完成签到,获得积分10
8秒前
xiaoyan完成签到,获得积分10
9秒前
9秒前
歪歪象发布了新的文献求助10
9秒前
minggalaxy007完成签到,获得积分10
10秒前
Hear完成签到,获得积分10
11秒前
Rick发布了新的文献求助10
11秒前
11秒前
万能图书馆应助栗子采纳,获得10
11秒前
11秒前
ZLZCV587完成签到,获得积分10
12秒前
vergil发布了新的文献求助10
13秒前
13秒前
淡然的萝应助幸会采纳,获得10
15秒前
珊珊发布了新的文献求助10
15秒前
科研通AI2S应助yaoyao采纳,获得10
16秒前
16秒前
16秒前
16秒前
17秒前
bkagyin应助爱笑素采纳,获得10
17秒前
17秒前
舒心冷雪发布了新的文献求助10
18秒前
柿子吖完成签到,获得积分10
19秒前
星辰大海应助瑾cc采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
简明儿童少年国际神经精神访谈(MINI-KID)中文版 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025907
求助须知:如何正确求助?哪些是违规求助? 3565653
关于积分的说明 11349947
捐赠科研通 3296642
什么是DOI,文献DOI怎么找? 1815818
邀请新用户注册赠送积分活动 890207
科研通“疑难数据库(出版商)”最低求助积分说明 813407