Unsupervised Contrastive Cross-modal Hashing

计算机科学 散列函数 情态动词 人工智能 模式识别(心理学) 自然语言处理 计算机安全 化学 高分子化学
作者
Peng Hu,Hongyuan Zhu,Jie Lin,Dezhong Peng,Yin‐Ping Zhao,Xi Peng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:130
标识
DOI:10.1109/tpami.2022.3177356
摘要

In this paper, we study how to make unsupervised cross-modal hashing (CMH) benefit from contrastive learning (CL) by overcoming two challenges. To be exact, i) to address the performance degradation issue caused by binary optimization for hashing, we propose a novel momentum optimizer that performs hashing operation learnable in CL, thus making on-the-shelf deep cross-modal hashing possible. In other words, our method does not involve binary-continuous relaxation like most existing methods, thus enjoying better retrieval performance; ii) to alleviate the influence brought by false-negative pairs (FNPs), we propose a Cross-modal Ranking Learning loss (CRL) which utilizes the discrimination from all instead of only the hard negative pairs, where FNP refers to the within-class pairs that were wrongly treated as negative pairs. Thanks to such a global strategy, CRL endows our method with better performance because CRL will not overuse the FNPs while ignoring the true-negative pairs. To the best of our knowledge, the proposed method could be one of the first successful contrastive hashing methods. To demonstrate the effectiveness of the proposed method, we carry out experiments on five widely-used datasets compared with 13 state-of-the-art methods. The code is available at https://github.com/penghu-cs/UCCH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Courageous完成签到 ,获得积分10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得10
3秒前
star应助科研通管家采纳,获得150
3秒前
ggjy发布了新的文献求助10
3秒前
GGBOND完成签到,获得积分10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
3秒前
啊这应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
及禾应助科研通管家采纳,获得30
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
麦乐迪应助科研通管家采纳,获得10
3秒前
圆锥香蕉应助科研通管家采纳,获得20
3秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
iNk应助科研通管家采纳,获得10
4秒前
changping应助科研通管家采纳,获得150
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
隐形觅翠完成签到,获得积分10
5秒前
JamesPei应助May采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501