重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Algorithmic versus Human Advice: Does Presenting Prediction Performance Matter for Algorithm Appreciation?

建议(编程) 计算机科学 算法 人工智能 数据科学 机器学习 程序设计语言
作者
Sangseok You,Cathy Yang,Xitong Li
出处
期刊:Journal of Management Information Systems [Informa]
卷期号:39 (2): 336-365 被引量:99
标识
DOI:10.1080/07421222.2022.2063553
摘要

We propose a theoretical model based on the judge-advisor system (JAS) and empirically examine how algorithmic advice, compared to identical advice from humans, influences human judgment. This effect is contingent on the level of transparency, which varies with whether and how the prediction performance of the advice source is presented. In a series of five controlled behavioral experiments, we show that individuals largely exhibit algorithm appreciation; that is, they follow algorithmic advice to a greater extent than identical human advice due to a higher trust in an algorithmic than human advisor. Interestingly, neither the extent of higher trust in algorithmic advisors nor the level of algorithm appreciation decreases when individuals are informed of the algorithm's prediction errors (i.e., upon presenting prediction performance in an aggregated format). By contrast, algorithm appreciation declines when the transparency of the advice source's prediction performance further increases through an elaborated format. This is plausibly because the greater cognitive load imposed by the elaborated format impedes advice taking. Finally, we identify a boundary condition: algorithm appreciation is reduced for individuals with a lower dispositional need for cognition. Our findings provide key implications for research and managerial practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lsm13141516完成签到,获得积分10
刚刚
guy发布了新的文献求助10
1秒前
1秒前
英俊的铭应助kkkuuu采纳,获得10
1秒前
Gnefhl发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
情怀应助阿玉采纳,获得10
3秒前
聪明帅哥完成签到,获得积分10
3秒前
3秒前
3秒前
小张早点睡完成签到,获得积分10
4秒前
LYNN完成签到,获得积分10
4秒前
侧耳倾听发布了新的文献求助10
4秒前
可乐完成签到,获得积分10
4秒前
桶桶发布了新的文献求助20
4秒前
zain发布了新的文献求助10
4秒前
5秒前
5秒前
雪碧完成签到,获得积分10
5秒前
XNchua完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
JamesPei应助filory采纳,获得10
7秒前
粗犷的沛容完成签到,获得积分0
7秒前
yao chen发布了新的文献求助10
7秒前
7秒前
8秒前
田様应助guy采纳,获得10
8秒前
9秒前
Masweet发布了新的文献求助10
9秒前
完美世界应助优雅冬灵采纳,获得10
9秒前
9秒前
zzy发布了新的文献求助10
9秒前
9秒前
10秒前
jsinm-thyroid完成签到 ,获得积分10
10秒前
lizike发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654