Magnetic Resonance Imaging Images under Deep Learning in the Identification of Tuberculosis and Pneumonia

肺炎 磁共振成像 肺结核 医学 肺结核 细菌性肺炎 放射科 人工智能 核医学 内科学 病理 计算机科学
作者
Yabin Liu,Yimin Wang,Ya Shu,Jing Zhu
出处
期刊:Journal of Healthcare Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-8 被引量:8
标识
DOI:10.1155/2021/6772624
摘要

This work aimed to explore the application value of deep learning-based magnetic resonance imaging (MRI) images in the identification of tuberculosis and pneumonia, in order to provide a certain reference basis for clinical identification. In this study, 30 pulmonary tuberculosis patients and 27 pneumonia patients who were hospitalized were selected as the research objects, and they were divided into a pulmonary tuberculosis group and a pneumonia group. MRI examination based on noise reduction algorithms was used to observe and compare the signal-to-noise ratio (SNR) and carrier-to-noise ratio (CNR) of the images. In addition, the apparent diffusion coefficient (ADC) value for the diagnosis efficiency of lung parenchymal lesions was analyzed, and the best b value was selected. The results showed that the MRI image after denoising by the deep convolutional neural network (DCNN) algorithm was clearer, the edges of the lung tissue were regular, the inflammation signal was higher, and the SNR and CNR were better than before, which were 119.79 versus 83.43 and 12.59 versus 7.21, respectively. The accuracy of MRI based on a deep learning algorithm in the diagnosis of pulmonary tuberculosis and pneumonia was significantly improved (96.67% vs. 70%, 100% vs. 62.96%) (P < 0.05). With the increase in b value, the CNR and SNR of MRI images all showed a downward trend (P < 0.05). Therefore, it was found that the shadow of tuberculosis lesions under a specific sequence was higher than that of pneumonia in the process of identifying tuberculosis and pneumonia, which reflected the importance of deep learning MRI images in the differential diagnosis of tuberculosis and pneumonia, thereby providing reference basis for clinical follow-up diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吐个泡泡发布了新的文献求助30
刚刚
所所应助小姑不在采纳,获得10
刚刚
小美发布了新的文献求助10
1秒前
gx发布了新的文献求助10
1秒前
2秒前
丘比特应助猪猪hero采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
樊晓发布了新的文献求助10
4秒前
jing完成签到,获得积分10
4秒前
风趣的碧琴完成签到,获得积分10
4秒前
润泉发布了新的文献求助10
5秒前
6秒前
科研通AI6应助WC采纳,获得10
7秒前
不安的米老鼠完成签到,获得积分10
8秒前
科研通AI2S应助洛洛洛采纳,获得10
9秒前
11秒前
11秒前
lubo完成签到,获得积分10
11秒前
sklz完成签到,获得积分10
11秒前
852应助樊晓采纳,获得30
11秒前
13秒前
vkey完成签到,获得积分10
13秒前
15秒前
猪猪hero发布了新的文献求助10
15秒前
zzzzzz完成签到,获得积分10
15秒前
16秒前
YuyingHuang完成签到,获得积分10
16秒前
随缘发布了新的文献求助10
17秒前
xingran完成签到,获得积分10
17秒前
缥缈书本完成签到 ,获得积分10
17秒前
小姑不在发布了新的文献求助10
18秒前
19秒前
laville完成签到,获得积分10
19秒前
20秒前
memory完成签到,获得积分10
20秒前
21秒前
Akim应助yangliming采纳,获得10
21秒前
渊渟岳峙发布了新的文献求助10
21秒前
新手菜鸟发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
A Systemic-Functional Study of Language Choice in Singapore 600
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4873190
求助须知:如何正确求助?哪些是违规求助? 4162721
关于积分的说明 12910920
捐赠科研通 3919325
什么是DOI,文献DOI怎么找? 2151872
邀请新用户注册赠送积分活动 1170182
关于科研通互助平台的介绍 1074039