Fine-grained interactive attention learning for semi-supervised white blood cell classification

计算机科学 人工智能 白细胞 机器学习 支持向量机 模式识别(心理学) 过程(计算) 监督学习 人类血液 医学 生理学 人工神经网络 内科学 操作系统
作者
Yan Ha,Zhijiang Du,Junfeng Tian
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:75: 103611-103611 被引量:6
标识
DOI:10.1016/j.bspc.2022.103611
摘要

White blood cell (WBC) is an essential part of the human immune system. To diagnose blood diseases, hematologists have to think about the WBC information. For instance, the number of each type of WBCs often implies the health condition of the human body. Thus, the classification of white blood cell images plays a significant role in the medical diagnosis process. However, manual WBC inspection is time-consuming and labor-intensive for experts, which means automated classification methods are needed for WBC recognition. Another problem is that the traditional automatic recognition system needs a large amount of annotated medical images for training, which is highly costly. In this respect, the semi-supervised learning framework has recently been widely used for medical diagnosis due to its specificity, which can explore relevant information from massive unlabeled data. In this study, a novel semi-supervised white blood cell classification method is proposed, named by Fine-grained Interactive Attention Learning (FIAL). It consists of a Semi-Supervised Teacher-Student (SSTS) module and a Fine-Grained Interactive Attention (FGIA) mechanism. In detail, SSTS employs limited labeled WBC images and generates predicted probability vectors for a large amount of unlabeled WBC samples, like a human. After top-k selection in predicted probabilities, the efficient data can be exploited from unlabeled WBC images for training. With a very small amount of annotated WBC images, FIAL achieves an average accuracy of 93.2% on BCCD dataset when giving 75 labeled images for each category, which sufficiently elaborates our excellent capability on semi-supervised white blood cell image classification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
傲寒发布了新的文献求助10
1秒前
所所应助狗熊岭在逃翠花采纳,获得10
1秒前
yanmengzhen完成签到 ,获得积分10
1秒前
haohao发布了新的文献求助10
2秒前
3秒前
一与发布了新的文献求助10
4秒前
suanlafen完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
hh发布了新的文献求助10
7秒前
香蕉觅云应助林川采纳,获得10
8秒前
SciGPT应助Jello采纳,获得10
8秒前
科研通AI5应助hyl采纳,获得10
9秒前
仲夏发布了新的文献求助10
12秒前
LYY完成签到,获得积分10
12秒前
yangjinru完成签到 ,获得积分10
15秒前
成年の童话完成签到,获得积分10
16秒前
16秒前
16秒前
18秒前
18秒前
耍酷砖头发布了新的文献求助10
19秒前
梳个啾啾发布了新的文献求助10
20秒前
20秒前
22秒前
CBY发布了新的文献求助10
23秒前
Frost完成签到,获得积分10
25秒前
Kenzonvay发布了新的文献求助10
26秒前
霸气梦菲发布了新的文献求助10
27秒前
立冬完成签到,获得积分10
29秒前
30秒前
科研通AI5应助甜美宛儿采纳,获得10
30秒前
耍酷砖头完成签到,获得积分20
31秒前
33秒前
Jello发布了新的文献求助10
35秒前
38秒前
nenoaowu发布了新的文献求助30
38秒前
richardzhang1984完成签到,获得积分10
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845142
求助须知:如何正确求助?哪些是违规求助? 3387280
关于积分的说明 10548665
捐赠科研通 3108036
什么是DOI,文献DOI怎么找? 1712359
邀请新用户注册赠送积分活动 824374
科研通“疑难数据库(出版商)”最低求助积分说明 774739