Malignant Bone Tumors Diagnosis Using Magnetic Resonance Imaging Based on Deep Learning Algorithms

人工智能 恶性肿瘤 磁共振成像 接收机工作特性 算法 机器学习 分割 计算机科学 深度学习 人工神经网络 分类器(UML) 医学 放射科 病理
作者
Vlad Alexandru Georgeanu,Mădălin Mămuleanu,Sorin Ghiea,Dan Selișteanu
出处
期刊:Medicina-lithuania [MDPI AG]
卷期号:58 (5): 636-636 被引量:43
标识
DOI:10.3390/medicina58050636
摘要

Background and Objectives: Malignant bone tumors represent a major problem due to their aggressiveness and low survival rate. One of the determining factors for improving vital and functional prognosis is the shortening of the time between the onset of symptoms and the moment when treatment starts. The objective of the study is to predict the malignancy of a bone tumor from magnetic resonance imaging (MRI) using deep learning algorithms. Materials and Methods: The cohort contained 23 patients in the study (14 women and 9 men with ages between 15 and 80). Two pretrained ResNet50 image classifiers are used to classify T1 and T2 weighted MRI scans. To predict the malignancy of a tumor, a clinical model is used. The model is a feed forward neural network whose inputs are patient clinical data and the output values of T1 and T2 classifiers. Results: For the training step, the accuracies of 93.67% for the T1 classifier and 86.67% for the T2 classifier were obtained. In validation, both classifiers obtained 95.00% accuracy. The clinical model had an accuracy of 80.84% for training phase and 80.56% for validation. The receiver operating characteristic curve (ROC) of the clinical model shows that the algorithm can perform class separation. Conclusions: The proposed method is based on pretrained deep learning classifiers which do not require a manual segmentation of the MRI images. These algorithms can be used to predict the malignancy of a tumor and on the other hand can shorten the time of their diagnosis and treatment process. While the proposed method requires minimal intervention from an imagist, it needs to be tested on a larger cohort of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
街上的狗完成签到,获得积分0
刚刚
听风随影发布了新的文献求助10
1秒前
慕青应助刘鑫采纳,获得10
1秒前
香蕉觅云应助zygclwl采纳,获得10
1秒前
xiaoli发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
revo完成签到,获得积分10
4秒前
万能图书馆应助听风随影采纳,获得10
6秒前
Ffgg发布了新的文献求助10
6秒前
124完成签到,获得积分10
6秒前
hope完成签到,获得积分10
6秒前
一心完成签到,获得积分10
6秒前
孟严青发布了新的文献求助10
7秒前
隐形曼青应助mm采纳,获得10
7秒前
华仔应助细心的从菡采纳,获得10
7秒前
8秒前
8秒前
Meng关注了科研通微信公众号
8秒前
小马甲应助研友_Z63G18采纳,获得10
8秒前
搜集达人应助Tan采纳,获得10
9秒前
七面东风完成签到,获得积分10
10秒前
masterchen完成签到,获得积分10
11秒前
aabbccc发布了新的文献求助10
11秒前
甜晞完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
qiuxiu完成签到,获得积分10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
qin完成签到,获得积分10
13秒前
佳无夜完成签到,获得积分10
14秒前
优秀的火发布了新的文献求助10
15秒前
洁净幻竹完成签到,获得积分20
16秒前
tiantiantian完成签到,获得积分10
16秒前
17秒前
18秒前
共享精神应助咖啡采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708665
求助须知:如何正确求助?哪些是违规求助? 5189265
关于积分的说明 15254544
捐赠科研通 4861584
什么是DOI,文献DOI怎么找? 2609540
邀请新用户注册赠送积分活动 1560064
关于科研通互助平台的介绍 1517810