Using Nursing Information and Data Mining to Explore the Factors That Predict Pressure Injuries for Patients at the End of Life

决策树 逻辑回归 支持向量机 人工神经网络 反向传播 多元统计 计算机科学 机器学习 医学 数据挖掘 人工智能 急诊医学
作者
Hsiu-Lan Li,Shih-Wei Lin,Yi‐Ting Hwang
出处
期刊:Cin-computers Informatics Nursing [Lippincott Williams & Wilkins]
卷期号:37 (3): 133-141 被引量:22
标识
DOI:10.1097/cin.0000000000000489
摘要

This study investigated the association between patient characteristics and the occurrence of pressure injuries for patients at the end of life. A retrospective study was conducted using data collected from 2062 patients at the end of life between January 2007 and October 2015. In addition to demographic data and pressure injury risk assessment scale scores, injury history, disease type, and length of hospitalization were revealed as the major independent variables for predicting the occurrence of pressure injuries. Both χ 2 tests and t tests were employed for binary variable analysis, and logistic regression was used to conduct multivariate analysis. Classification models were formulated through decision tree analysis, backpropagation neural network, and support vector machine algorithms. The rules obtained using the decision tree algorithm were analyzed and interpreted. The accuracy rate, sensitivity, and specificity of the decision tree, backpropagation neural network, and support vector machine algorithms were 77.15%, 79.54%, and 74.76%; 78.12%, 81.37%, and 74.85%; and 79.32%, 81.03%, and 78.75%, respectively. The predictive factors, ranked in order of importance, were history of pressure injuries, without cancer, excretion, activity/mobility, and skin condition/circulation. These were the primary shared risk factors among the four models used in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助热情的笑白采纳,获得10
2秒前
二饼完成签到,获得积分10
3秒前
简啦啦发布了新的文献求助10
5秒前
科研通AI2S应助zhao采纳,获得10
5秒前
迷人幻巧完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
蓝天应助学术老6采纳,获得10
7秒前
隐形曼青应助zhu采纳,获得10
8秒前
liney完成签到,获得积分10
9秒前
10秒前
持满发布了新的文献求助10
11秒前
王强完成签到,获得积分10
11秒前
guoy郭莹发布了新的文献求助10
12秒前
13秒前
13秒前
桐桐应助持满采纳,获得10
15秒前
凉雨渲完成签到,获得积分10
15秒前
16秒前
16秒前
斯文败类应助唐白云采纳,获得10
16秒前
17秒前
19秒前
21秒前
21秒前
22秒前
awaiskhan发布了新的文献求助10
23秒前
Vegetable_Dog发布了新的文献求助10
25秒前
Cristina发布了新的文献求助10
25秒前
26秒前
迷人幻巧发布了新的文献求助10
27秒前
开心榴莲大王完成签到 ,获得积分10
27秒前
启蒙与追索关注了科研通微信公众号
28秒前
李爱国应助沉静的芷容采纳,获得10
29秒前
Vegetable_Dog完成签到,获得积分10
30秒前
33秒前
大模型应助项目多多采纳,获得30
33秒前
自觉的镜子完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478