亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis

计算机科学 人工智能 过程(计算) 机器学习 药物发现 化学空间 虚拟筛选 生化工程 化学 工程类 程序设计语言 生物化学
作者
Alexander L. Button,Daniel Merk,Jan A. Hiss,Gisbert Schneider
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (7): 307-315 被引量:94
标识
DOI:10.1038/s42256-019-0067-7
摘要

Chemical creativity in the design of new synthetic chemical entities (NCEs) with drug-like properties has been the domain of medicinal chemists. Here, we explore the capability of a chemistry-savvy machine intelligence to generate synthetically accessible molecules. DINGOS (design of innovative NCEs generated by optimization strategies) is a virtual assembly method that combines a rule-based approach with a machine learning model trained on successful synthetic routes described in chemical patent literature. This unique combination enables a balance between ligand-similarity-based generation of innovative compounds by scaffold hopping and the forward-synthetic feasibility of the designs. In a prospective proof-of-concept application, DINGOS successfully produced sets of de novo designs for four approved drugs that were in agreement with the desired structural and physicochemical properties. Target prediction indicated more than 50% of the designs to be biologically active. Four selected computer-generated compounds were successfully synthesized in accordance with the synthetic route proposed by DINGOS. The results of this study demonstrate the capability of machine learning models to capture implicit chemical knowledge from chemical reaction data and suggest feasible syntheses of new chemical matter. Artificial intelligence approaches can aid medicinal chemists to creatively look for new chemical entities with drug-like properties. A rule-based approach combined with a machine learning model was trained on successful synthetic routes described in chemical patent literature. This process produced computer-generated compounds that mimic known medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助洞两采纳,获得10
3秒前
慕子完成签到 ,获得积分10
10秒前
14秒前
在水一方完成签到 ,获得积分10
17秒前
22秒前
24秒前
yuchangkun完成签到,获得积分10
26秒前
yuchangkun发布了新的文献求助10
29秒前
29秒前
Linden_bd完成签到 ,获得积分10
30秒前
鱼猫完成签到,获得积分20
33秒前
35秒前
无极微光应助yuchangkun采纳,获得20
35秒前
充电宝应助唐阳采纳,获得10
36秒前
丘比特应助wwww采纳,获得10
37秒前
洞两发布了新的文献求助10
39秒前
我是老大应助科研通管家采纳,获得10
47秒前
Huzhu应助科研通管家采纳,获得10
47秒前
58秒前
fuwei完成签到,获得积分10
58秒前
1分钟前
今天开心吗完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助虚拟的凡波采纳,获得10
1分钟前
1分钟前
1分钟前
浮游应助王威采纳,获得10
1分钟前
南寅完成签到,获得积分10
1分钟前
科研通AI6应助yinian采纳,获得30
1分钟前
1分钟前
chenyue233发布了新的文献求助10
1分钟前
1分钟前
唐阳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
wwww发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
27小天使完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488503
求助须知:如何正确求助?哪些是违规求助? 4587316
关于积分的说明 14413618
捐赠科研通 4518671
什么是DOI,文献DOI怎么找? 2475964
邀请新用户注册赠送积分活动 1461489
关于科研通互助平台的介绍 1434379