Machine Learning in the development of Si-based anodes using Small-Angle X-ray Scattering for structural property analysis

小角X射线散射 自编码 人工神经网络 散射 计算机科学 材料科学 人工智能 表征(材料科学) 过程(计算) 溶胶凝胶 阳极 机器学习 生物系统 纳米技术 光学 电极 物理 量子力学 生物 操作系统
作者
Philipp Seitz,C. Scherdel,Gudrun Reichenauer,Jan Schmitt
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:218: 111984-111984 被引量:6
标识
DOI:10.1016/j.commatsci.2022.111984
摘要

Material development processes are highly iterative and driven by the experience and intuition of the researcher. This can lead to time consuming procedures. Data-driven approaches such as Machine Learning can support decision processes with trained and validated models to predict certain output parameter. In a multifaceted process chain of material synthesis of electrochemical materials and their characterization, Machine Learning has a huge potential to shorten development processes. Based on this, the contribution presents a novel approach to utilize data derived from Small-Angle X-ray Scattering (SAXS) of SiO2 matrix materials for battery anodes with Neural Networks. Here, we use SAXS as an intermediate, high-throughput method to characterize sol–gel based porous materials. A multi-step-method is presented where a Feed Forward Net is connected to a pretrained autoencoder to reliably map parameters of the material synthesis to the SAXS curve of the resulting material. In addition, a direct comparison shows that the prediction error of Neural Networks can be greatly reduced by training each output variable with a separate independent Neural Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JamesPei应助淑婷采纳,获得10
刚刚
Owen应助贺知什么书采纳,获得10
刚刚
spujo应助九个太阳采纳,获得10
刚刚
斯文败类应助哈哈哈采纳,获得10
1秒前
HEISITATION完成签到,获得积分10
2秒前
Lucas应助微笑的寒梦采纳,获得10
3秒前
4秒前
鸭梨完成签到,获得积分10
4秒前
5123发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
8秒前
5123完成签到,获得积分10
10秒前
10秒前
10秒前
Clown发布了新的文献求助10
12秒前
13秒前
13秒前
悠咪发布了新的文献求助10
14秒前
14秒前
mmxr完成签到,获得积分20
14秒前
淑婷发布了新的文献求助10
15秒前
mengxue完成签到,获得积分10
15秒前
16秒前
mmxr发布了新的文献求助10
17秒前
大钱哥完成签到,获得积分10
17秒前
乐乐应助xi采纳,获得10
18秒前
mengxue发布了新的文献求助10
18秒前
19秒前
zzx发布了新的文献求助10
19秒前
20秒前
妮妮发布了新的文献求助10
20秒前
21秒前
打打应助Clown采纳,获得10
21秒前
21秒前
22秒前
TillySss发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787580
求助须知:如何正确求助?哪些是违规求助? 3333171
关于积分的说明 10259745
捐赠科研通 3048682
什么是DOI,文献DOI怎么找? 1673245
邀请新用户注册赠送积分活动 801721
科研通“疑难数据库(出版商)”最低求助积分说明 760338