CNN-Transformer Based Generative Adversarial Network for Copy-Move Source/ Target Distinguishment

计算机科学 鉴别器 人工智能 卷积神经网络 模式识别(心理学) 特征提取 变压器 特征(语言学) 计算机视觉 发电机(电路理论) 生成对抗网络 图像(数学) 电信 哲学 物理 功率(物理) 电压 探测器 量子力学 语言学
作者
Yulan Zhang,Guopu Zhu,Xing Wang,Xiangyang Luo,Yicong Zhou,Hongli Zhang,Ligang Wu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (5): 2019-2032 被引量:17
标识
DOI:10.1109/tcsvt.2022.3220630
摘要

Copy-move forgery can be used for hiding certain objects or duplicating meaningful objects in images. Although copy-move forgery detection has been studied extensively in recent years, it is still a challenging task to distinguish between the source and the target regions in copy-move forgery images. In this paper, a convolutional neural network-transformer based generative adversarial network (CNN-T GAN) is proposed to distinguish the source and target regions in a copy-move forged image. A generator is first utilized to generate a mask that is similar to the groundtruth mask. Then, a discriminator is trained to discriminate the true image pairs from the false ones. When the discriminator cannot discriminate the true/false image pairs accurately, the generator can be used to obtain the final localization maps of copy-move forgery. In the generator, convolutional neural network (CNN) and transformer are exploited to extract the local features and global representations in copy-move forgery images, respectively. In addition, feature coupling layers are designed to integrate the features in CNN branch and transformer branch in an interactive way. Finally, a new Pearson correlation layer is introduced to match the similarity features in source and target regions, which can improve the performance of copy-move forgery localization, especially the localization performance on source regions. To the best of our knowledge, this is the first work to utilize transformer for feature extraction in copy-move forgery localization. The proposed method can not only detect the copy-move regions, but also distinguish the source and target regions. Extensive experimental results on several commonly used copy-move datasets have shown that the proposed method outperforms the state-of-the-art methods for copy-move detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahaha完成签到,获得积分10
1秒前
烟花应助Ttimer采纳,获得20
1秒前
科研通AI5应助liuyong6413采纳,获得10
5秒前
菠萝炒蛋加饭完成签到 ,获得积分10
7秒前
慧喆完成签到 ,获得积分10
9秒前
伶俐的语雪完成签到,获得积分10
9秒前
喜宝完成签到 ,获得积分10
10秒前
16秒前
土豆酱完成签到,获得积分20
18秒前
打打应助辛勤的大帅采纳,获得10
19秒前
ggh完成签到,获得积分10
20秒前
土豆酱发布了新的文献求助10
22秒前
珂珂完成签到 ,获得积分10
25秒前
cq_2完成签到,获得积分0
27秒前
黄黄完成签到 ,获得积分10
28秒前
28秒前
mp5完成签到,获得积分10
29秒前
叶子完成签到 ,获得积分10
30秒前
grace完成签到 ,获得积分10
31秒前
娜娜完成签到 ,获得积分10
32秒前
32秒前
cdercder应助科研通管家采纳,获得10
34秒前
cdercder应助科研通管家采纳,获得10
34秒前
cdercder应助科研通管家采纳,获得10
34秒前
Ttimer发布了新的文献求助20
38秒前
啵啵只因完成签到,获得积分10
41秒前
Iris完成签到 ,获得积分20
43秒前
蓝桉完成签到 ,获得积分10
47秒前
入门的橙橙完成签到 ,获得积分10
52秒前
Iris关注了科研通微信公众号
55秒前
唐禹嘉完成签到 ,获得积分10
56秒前
57秒前
summer完成签到,获得积分10
59秒前
那那发布了新的文献求助20
1分钟前
1分钟前
大砖华发布了新的文献求助10
1分钟前
1分钟前
agui完成签到 ,获得积分10
1分钟前
邪恶青年完成签到,获得积分10
1分钟前
Russula_Chu应助那那采纳,获得10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349064
关于积分的说明 10341264
捐赠科研通 3065204
什么是DOI,文献DOI怎么找? 1682974
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600