Research on Architectural Engineering Cost Prediction and Analysis Based on Generative Adversarial Network and Reinforcement Learning

生成语法 强化学习 钢筋 计算机科学 人工智能 对抗制 生成设计 生成对抗网络 机器学习 工程类 深度学习 结构工程 运营管理 公制(单位)
作者
Shan Xie,Xiao Li
出处
期刊:International Journal of Reliability, Quality and Safety Engineering [World Scientific]
卷期号:32 (06)
标识
DOI:10.1142/s0218539325500184
摘要

In the context of global economic integration and technological innovation, the construction industry is facing unprecedented opportunities and challenges. Among them, accurately predicting the cost of architectural engineering is the key to ensuring project economic benefits and promoting industry transformation and upgrading. Insufficient data and nonlinear factors limit traditional cost-footing methods, making it hard to meet the increasing demand for modern construction projects. In view of this situation, this study proposes a solution that combines Generative Adversarial Networks (GANs) and Reinforcement Learning (RL), aiming at improving the accuracy and efficiency of cost forecasting. First, GANs are used to generate virtual engineering datasets covering a wide range of variables, which effectively expands the original data scale and enhances the model’s generalization ability. Then, with the help of RL technology, the intelligent agent is trained to learn and optimize the cost forecasting strategy independently in the complex market environment. After comparative analysis, compared with the traditional prediction methods that only use the historical average method and linear regression, the prediction model integrating GANs and RL proposed in this study shows obvious advantages. The test-set performance shows that the new model’s prediction error is reduced by about 20%, especially for large-scale and high-complexity engineering projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
科研通AI6应助TSW采纳,获得10
1秒前
1秒前
2秒前
苏灿发布了新的文献求助10
3秒前
3秒前
乐乐应助CP采纳,获得10
3秒前
3秒前
意忆完成签到 ,获得积分10
3秒前
所所应助米米采纳,获得10
4秒前
4秒前
6秒前
传奇3应助哒布6采纳,获得10
6秒前
科研通AI6应助MikiWu采纳,获得10
7秒前
闪闪的凉面完成签到,获得积分10
7秒前
meteor发布了新的文献求助10
8秒前
9秒前
10秒前
科研通AI6应助melody采纳,获得30
10秒前
听风完成签到 ,获得积分10
11秒前
CodeCraft应助zyj采纳,获得10
11秒前
17312852068完成签到 ,获得积分10
12秒前
12秒前
卓头OvQ完成签到,获得积分10
13秒前
15秒前
田様应助玉襄采纳,获得10
16秒前
Han发布了新的文献求助10
16秒前
小心甜死完成签到,获得积分10
16秒前
Lucas应助聪慧的盼夏采纳,获得10
17秒前
111发布了新的文献求助10
18秒前
在水一方应助螺旋向上采纳,获得10
18秒前
FashionBoy应助Huiqi_Li采纳,获得10
18秒前
米米发布了新的文献求助10
18秒前
mont完成签到,获得积分10
19秒前
19秒前
拼搏枕头发布了新的文献求助10
19秒前
李健应助zz采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533028
求助须知:如何正确求助?哪些是违规求助? 4621501
关于积分的说明 14578871
捐赠科研通 4561540
什么是DOI,文献DOI怎么找? 2499379
邀请新用户注册赠送积分活动 1479243
关于科研通互助平台的介绍 1450498